SAMSUNG

ELECTRONICS

USER'S MANUAL ERRATA

This document contains the corrections of errors, typos and omissions in the following document.

Samsung 8-bit CMOS S3C84E5/C84E9/P84E9 Microprocessor User's Manual
Document Number: 21.1-S3-C84E5/C84E9/P84E9-082005
Publication: August 2005

ERRATA (VER 1.1)

Samsung 8-bit CMOS S3C84E5/C84E9/P84E9 Microprocessor User's Manual Document Number: 21.1-S3-C84E5/C84E9/P84E9-082005
Publication: August 2005

1. Features (PAGE 1-2)

Built-in RESET circuit (LVR)

- Low-Voltage reset (LVR value: 2.9 V)

Operating Voltage Range

- $\mathrm{V}_{\mathrm{LVR}}$ to 5.5 V

2. Low Voltage Reset (PAGE 16-1)

The on-chip Low Voltage Reset, features static reset when supply voltage is below a reference voltage value (Typical 2.9 V).

3. Low Voltage Reset (PAGE 16-2)

Figure 16-1. Low Voltage Reset Circuit

4. Table 17-3. D.C. Electrical Characteristics (PAGE 17-3)

$\left(\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LVR}}$ to 5.5 V)

Parameter	Symbol	Conditions	Min	Typ.	Max	Unit
Input high voltage	$\mathrm{V}_{\mathrm{IH} 1}$	$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LVR}}$ to 5.5 V All port and nRESET	$0.8 \mathrm{~V}_{\mathrm{DD}}$	-	V_{DD}	V
	$\mathrm{V}_{\mathrm{IH} 2}$	$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LVR}}$ (to 5.5 V X_{IN} and $\mathrm{XT}_{\mathrm{IN}}$	$\mathrm{V}_{\mathrm{DD}}-0.5$			
	$\mathrm{V}_{\mathrm{IL} 1}$	$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LVR}}$ to 5.5 V All ports and nRESET	-	-	$0.2 \mathrm{~V}_{\mathrm{DD}}$	V
	$\mathrm{V}_{\mathrm{IL} 2}$	$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LVR}}$ to 5.5 V X_{IN} and $\mathrm{XT}_{\mathrm{IN}}$			0.4	

5. Table 17-3. D.C. Electrical Characteristics (PAGE 17-4)
$\left(\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LVR}}$ to 5.5 V$)$

Parameter	Symbol	Conditions	Min	Typ.	Max	Unit
Pull-up resistor	$\mathrm{R}_{\mathrm{P} 1}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ All I/O pins except nRESET	10	50	100	$\mathrm{k} \Omega$
		$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ All I/O pins except nRESET	20	100	400	
	$\mathrm{R}_{\mathrm{P} 2}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} ; \mathrm{V}_{I \mathrm{~N}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { nRESET only } \end{aligned}$	50	250	600	
		$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ nRESET only	100	500	1000	
Supply current ${ }^{(1)}$	$\mathrm{I}_{\mathrm{DD} 1}{ }^{(2)}$	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ to 5.5 V RUN mode 12 MHz CPU clock	-	15	30	mA
		$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LVR}} \text { to } 5.5 \mathrm{~V} \\ & 8 \mathrm{MHz} \mathrm{CPU} \text { clock } \end{aligned}$		4	10	
	$\mathrm{I}_{\mathrm{DD} 2}$	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}$ Idle mode 12 MHz CPU clock		3.4	7	
		$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LVR}}$ to 5.5 V 8 MHz CPU clock		1	2.5	
	$\mathrm{I}_{\mathrm{DD} 3}$	Sub operating: main-osc stop $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LVR}}$ to 3.3 V 32768 Hz crystal oscillator	-	100	150	uA
	$\mathrm{I}_{\mathrm{DD} 4}$	Sub idle mode: main-osc stop $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LVR}}$ to 3.3 V 32768 Hz crystal oscillator	-	90	140	
	$\mathrm{I}_{\text {DD5 }}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { Stop mode } \\ & \hline \end{aligned}$	-	80	100	
		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LVR}} \text { to } 3.3 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { Stop mode } \end{aligned}$	-	45	80	

6. Table 17-4. A.C. Electrical Characteristics (PAGE 17-5)

$\left(\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LVR}}$ to 5.5 V$)$

7. Table 17-5. Main Oscillator Frequency (PAGE 17-6)

$\left(\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LVR}}\right.$ to 5.5 V$)$

Oscillator	Clock Circuit	Test Condition	Min	Typ.	Max	Unit
Main crystal or ceramic		$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LVR}}$ to 5.5 V	1	-	12	MHz
External clock (main system)		$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LVR}}$ to 5.5 V	1	-	12	

8. Table 17-6. Main Oscillator Clock Stabilization Time(PAGE 17-6)

$\left(\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LVR}}\right.$ to 5.5 V$)$

9. Table 17-7. Sub Oscillator Frequency (PAGE 17-7)

$\left(\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LVR}}\right.$ to 5.5 V)

Oscillator	Clock Circuit	Test Condition	Min	Typ.	Max	Unit
Crystal		Crystal oscillation frequency $\mathrm{C} 1=100 \mathrm{pF}, \mathrm{C} 2=100 \mathrm{pF}$ $R=330 \Omega$ $\mathrm{XT}_{\text {IN }}$ and $\mathrm{XT}_{\text {OUT }}$ are connected with R and C by soldering.	32	32.768	34	kHz

10. Table 17-8. Subsystem Oscillator (crystal) Stabilization Time (PAGE 17-7)
($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Oscillator	Test Condition	Min	Typ.	Max	Unit
Normal mode	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ to 5.5 V	-	800	1600	ms
	$\mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LVR}}$ to 3.3 V	-		10	s
Strong mode	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ to 5.5 V	-	400	800	ms
	$\mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LVR}}$ to 3.3 V	-	150	300	

11. Table 17-9. Data Retention Supply Voltage in Stop Mode (PAGE 17-8)
$\left(\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LVR}}$ to 5.5 V$)$
12. Table 17-10. UART Timing Characteristics in Mode 0 (PAGE 17-10)
$\left(T_{A}=-25^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LVR}}$ to 5.5 V , Load capacitance $=80 \mathrm{pF}$)

Parameter	Symbol	Min	Typ.	Max	Unit
Serial port clock cycle time	$\mathrm{t}_{\text {SCK }}$	500	$\mathrm{t}_{\mathrm{CPU}} \times 6$	700	ns
Output data setup to clock rising edge	$\mathrm{t}_{\text {S } 1}$	300	$\mathrm{t}_{\mathrm{CPU}} \times 5$	-	
Serial port clock High, Low level width	$\mathrm{t}_{\text {HIGH, }}, \mathrm{t}_{\text {LOW }}$	200	$\mathrm{t}_{\mathrm{CPU}} \times 3$	400	

13. Table 17-11. A/D Converter Electrical Characteristics (PAGE 17-11)
$\left(\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LVR}}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$)
14. Table 17-12. LVR (Low Voltage Reset) Circuit Characteristics (PAGE 17-12)
($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
LVR voltage level	$\mathrm{V}_{\mathrm{LVR}}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.6	2.9	3.2	V

15. Figure 17-8. Operating Voltage Range(PAGE 17-12)

16. Table 19-2. Comparison of S3P84E9 and S3C84E5/C84E9 Features (PAGE 17-12)

Characteristic	S3P84E9	S3C84E5/C84E9
Operating voltage $\left(\mathrm{V}_{\mathrm{DD}}\right)$	$\mathrm{V}_{\mathrm{LVR}}$ to 5.5 V	$\mathrm{~V}_{\mathrm{LVR}}$ to 5.5 V

S3C84E5/C84E9/P84E9

8-BIT CMOS MICROCONTROLLERS USER'S MANUAL

Revision 1.1

SAMSUNG
ELECTRONICS

Important Notice

The information in this publication has been carefully checked and is believed to be entirely accurate at the time of publication. Samsung assumes no responsibility, however, for possible errors or omissions, or for any consequences resulting from the use of the information contained herein.

Samsung reserves the right to make changes in its products or product specifications with the intent to improve function or design at any time and without notice and is not required to update this documentation to reflect such changes.

This publication does not convey to a purchaser of semiconductor devices described herein any license under the patent rights of Samsung or others.

Samsung makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Samsung assume any liability arising out of the application or use of any product or circuit and specifically disclaims any and all liability, including without limitation any consequential or incidental damages.
"Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by the customer's technical experts.

Samsung products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, for other applications intended to support or sustain life, or for any other application in which the failure of the Samsung product could create a situation where personal injury or death may occur.

Should the Buyer purchase or use a Samsung product for any such unintended or unauthorized application, the Buyer shall indemnify and hold Samsung and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, expenses, and reasonable attorney fees arising out of, either directly or indirectly, any claim of personal injury or death that may be associated with such unintended or unauthorized use, even if such claim alleges that Samsung was negligent regarding the design or manufacture of said product.

S3C84E5/C84E9/P84E9 8-Bit CMOS Microcontrollers

User's Manual, Revision 1.1

Publication Number: 21.1-S3-C84E5/C84E9/P84E9-082005

© 2005 Samsung Electronics

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electric or mechanical, by photocopying, recording, or otherwise, without the prior written consent of Samsung Electronics.

Samsung Electronics' microcontroller business has been awarded full ISO-14001 certification (BSI Certificate No. FM24653). All semiconductor products are designed and manufactured in accordance with the highest quality standards and objectives.

Samsung Electronics Co., Ltd.
San \#24 Nongseo-Ri, Giheung-Eup
Yongin-City, Gyeonggi-Do, Korea
C.P.O. Box \#37, Suwon 440-900

TEL: (82)-(31)-209-5238
FAX: (82)-(31)-209-6494
Home Page: http://www.samsung.com
Printed in the Republic of Korea

Preface

The S3C84E5/C84E9/P84E9 Microcontroller User's Manual is designed for application designers and programmers who are using the S3C84E5/C84E9/P84E9 microcontroller for application development. It is organized in two main parts:
Part I Programming Model Part II Hardware Descriptions

Part I contains software-related information to familiarize you with the microcontroller's architecture, programming model, instruction set, and interrupt structure. It has six chapters:

Chapter 1	Product Overview	Chapter 4	Control Registers
Chapter 2	Address Spaces	Chapter 5	Interrupt Structure
Chapter 3	Addressing Modes	Chapter 6	Instruction Set

Chapter 1, "Product Overview," is a high-level introduction to S3C84E5/C84E9/P84E9 with general product descriptions, as well as detailed information about individual pin characteristics and pin circuit types.

Chapter 2, "Address Spaces," describes program and data memory spaces, the internal register file, and register addressing. Chapter 2 also describes working register addressing, as well as system stack and user-defined stack operations.
Chapter 3, "Addressing Modes," contains detailed descriptions of the addressing modes that are supported by the S3C8-series CPU.
Chapter 4, "Control Registers," contains overview tables for all mapped system and peripheral control register values, as well as detailed one-page descriptions in a standardized format. You can use these easy-to-read, alphabetically organized, register descriptions as a quick-reference source when writing programs.
Chapter 5, "Interrupt Structure," describes the S3C84E5/C84E9/P84E9 interrupt structure in detail and further prepares you for additional information presented in the individual hardware module descriptions in Part II.
Chapter 6, "Instruction Set," describes the features and conventions of the instruction set used for all S3C8-series microcontrollers. Several summary tables are presented for orientation and reference. Detailed descriptions of each instruction are presented in a standard format. Each instruction description includes one or more practical examples of how to use the instruction when writing an application program.
A basic familiarity with the information in Part I will help you to understand the hardware module descriptions in Part II. If you are not yet familiar with the S3C8-series microcontroller family and are reading this manual for the first time, we recommend that you first read Chapters 1-3 carefully. Then, briefly look over the detailed information in Chapters 4,5 , and 6 . Later, you can reference the information in Part I as necessary.

Part II "hardware Descriptions," has detailed information about specific hardware components of the S3C84E5/C84E9/P84E9 microcontroller. Also included in Part II are electrical, mechanical, OTP, and development tools data. It has 14 chapters:

Chapter $7 \quad$ Clock Circuit
Chapter 8 RESET and Power-Down
Chapter 9 I/O Ports
Chapter 10 Basic Timer
Chapter 11 8-bit Timer A/B
Chapter 12 16-bit Timer 1 $(0,1)$
Chapter 13 UART

Chapter 14 Watch Timer
Chapter 15 A/D Converter
Chapter 16 Low Voltage Reset
Chapter 17 Electrical Data
Chapter 18 Mechanical Data
Chapter 19 S3P84E9 OTP version
Chapter 20 Development Tools

Two order forms are included at the back of this manual to facilitate customer order for S3C84E5/C84E9/P84E9 microcontrollers: the Mask ROM Order Form, and the Mask Option Selection Form. You can photocopy these forms, fill them out, and then forward them to your local Samsung Sales Representative.

Table of Contents

Part I — Programming Model

Chapter 1 Product Overview

S3C8-SERIES Microcontrollers 1-1
S3C84E5/C84E9/P84E9 Microcontroller 1-1
Features 1-2
Block Diagram 1-3
Pin Assignment 1-4
Pin Assignment 1-5
Pin Descriptions 1-6
Pin Circuits 1-8
Chapter 2 Address Spaces
Overview 2-1
Program Memory (ROM) 2-2
Register Architecture 2-3
Register Page Pointer (PP) 2-5
Register Set 1 2-7
Register Set 2 2-7
Prime Register Space 2-8
Working Registers 2-9
Using the Register Pointers 2-10
Register Addressing 2-12
Common Working Register Area (COh-Cfh). 2-14
4-Bit Working Register Addressing 2-15
8-Bit Working Register Addressing 2-17
System and User Stack 2-19
Chapter $3 \quad$ Addressing Modes
Overview 3-1
Register Addressing Mode (R) 3-2
Indirect Register Addressing Mode (IR) 3-3
Indexed Addressing Mode (X) 3-7
Direct Address Mode (DA) 3-10
Indirect Address Mode (IA) 3-12
Relative Address Mode (RA) 3-13
Immediate Mode (IM) 3-14

Table of Contents (Continued)

Chapter 4 Control Registers
Overview 4-1
Chapter 5 Interrupt Structure
Overview 5-1
Interrupt Types 5-2
S3C84E5/C84E9/P84E9 Interrupt Structure 5-3
Interrupt Vector Addresses 5-5
Enable/Disable Interrupt Instructions (EI, DI) 5-7
System-Level Interrupt Control Registers 5-7
Interrupt Processing Control Points 5-8
Peripheral Interrupt Control Registers 5-9
System Mode Register (SYM) 5-10
Interrupt Mask Register (IMR) 5-11
Interrupt Priority Register (IPR) 5-12
Interrupt Request Register (IRQ) 5-14
Interrupt Pending Function Types 5-15
Interrupt Source Polling Sequence 5-16
Interrupt Service Routines 5-16
Generating Interrupt Vector Addresses 5-17
Nesting of Vectored Interrupts 5-17
Chapter 6 Instruction Set
Overview 6-1
Data Types 6-1
Register Addressing 6-1
Addressing Modes 6-1
Flags Register (FLAGS) 6-6
Flag Descriptions 6-7
Instruction Set Notation 6-8
Condition Codes 6-12
Instruction Descriptions 6-13

Table of Contents (Continued)

Part II Hardware Descriptions

Chapter $7 \quad$ Clock Circuit

Overview 7-1
System Clock Circuit 7-1
Clock Status During Power-Down Modes 7-2
System Clock Control Register (CLKCON) 7-3
Chapter 8 RESET and Power-Down
System Reset 8-1
Overview 8-1
Normal Mode RESET Operation. 8-1
Hardware RESET Values 8-2
Power-Down Modes 8-5
Stop Mode 8-5
Idle Mode. 8-6
Chapter 9 I/O Ports
Overview 9-1
Port Data Registers 9-2
Port 0. 9-3
Port 1 9-5
Port 2. 9-7
Port 3. 9-12
Port 4. 9-14
Chapter 10 Basic Timer
Overview 10-1
Basic Timer (BT) 10-1
Basic Timer Control Register (BTCON) 10-1
Basic Timer Function Description 10-3

Table of Contents (Continued)

Chapter 11 8-bit Timer A/B
8-Bit Timer A. 11-1
Overview 11-1
Function Description 11-2
Timer A Control Register (TACON) 11-3
Block Diagram 11-4
8-Bit Timer B. 11-5
Overview 11-5
Block Diagram 11-5
Timer B Control Register (TBCON) 11-6
Timer B Pulse Width Calculations 11-7
Chapter 12 16-bit Timer 1(0, 1)
Overview 12-1
Function Description 12-2
Timer 1 $(0,1)$ Control Register (T1CON0, T1CON1) 12-3
Block Diagram 12-6
Chapter 13 UART
Overview 13-1
Programming Procedure. 13-1
Uart Control Register (UARTCON) 13-2
Uart Interrupt Pending Register (UARTPND) 13-4
Uart Data Register (UDATA) 13-5
Uart Baud Rate Data Register (BRDATAH, BRDATAL). 13-6
Baud Rate Calculations 13-6
Block Diagram 13-8
Uart Mode 0 Function Description 13-9
Uart Mode 1 Function Description 13-10
Uart Mode 2 Function Description 13-11
Serial Communication for Multiprocessor Configurations 13-13
Chapter 14 Watch Timer
Overview 14-1
Watch Timer Control Register (WTCON: R/W) 14-2
Watch Timer Circuit Diagram 14-3

Table of Contents (Continued)

Chapter 15 8-bit Analog-to-Digital Converter
Overview 15-1
Function Description 15-1
A/D Converter Control Register (ADCON) 15-2
Internal Reference Voltage Levels. 15-4
Conversion Timing 15-4
Internal A/D Conversion Procedure 15-5
Chapter 16 Low Voltage RESET
Overview 16-1
Chapter 17 Electrical Data
Overview 17-1
Chapter 18 Mechanical Data
Overview 18-1
Chapter 19 S3P84E9 OTP Version
Overview 19-1
Operating Mode Characteristics 19-3
Chapter 20 Development Tools
Overview 20-1
Shine 20-1
Sasm 20-1
Sama Assembler. 20-1
HEX2ROM 20-1
Target Boards 20-2
Otp 20-2
Otp Programming Socket Adapter. 20-2
TB84E5/84E9 Target Board 20-3
Idle Led 20-4
Stop Led. 20-4
Port (P0.0, P0.1) Selection (SUB-OSC or normal input) 20-4

List of Figures

Figure Title
Number Number
1-1 S3C84E5/C84E9/P84E9 Block Diagram 1-3
1-21-3
S3C84E5/C84E9/P84E9 Pin Assignment (44-pin QFP) 1-4
S3C84E5/C84E9/P84E9 Pin Assignment (42-pin SDIP) 1-5
Pin Circuit Type B (RESETB) 1-8
Pin Circuit Type C
Pin Circuit Type C 1-8 1-8
Pin Circuit Type D (P0.2-P0.7, P1, P4.3-P4.5) 1-9
-61-7Pin Circuit Type D-1 (P2, and P4.0-P4.2)1-9
Pin Circuit Type E (P3) 1-10
Pin Circuit Type F (P0.0, P0.1) 1-10-2Program Memory Address Space2-2
Internal Register File Organization. 2-4
2-3 Register Page Pointer (PP) 2-5Set 1, Set 2, Prime Area Register2-8
8-Byte Working Register Areas (Slices). 2-9
Contiguous 16 Byte Working Register Block 2-10
2-6
Non-Contiguous 16 Byte Working Register Block 2-11
2-7
2-72-816-Bit Register Pair2-12
2-9 mile Addressing 2-132-10
Common Working Register Area 2-14
4-Bit Working Register Addressing 2-16
4-Bit Working Register Addressing Example 2-16
2-13 8-Bit Working Register Addressing 2-17
2-14 8-Bit Working Register Addressing Example 2-18
2-15 Stack Operations 2-19
3-1 Register Addressing 3-2
Working Register Addressing 3-2
Indirect Register Addressing to Register File 3-3
3-3
Indirect Register Addressing to Program Memory 3-4
3-4
3-4
Indirect Working Register Addressing to Register File 3-5
3-6 Indirect Working Register Addressing to Program or Data Memory 3-6
3-7 Indexed Addressing to Register File 3-7
3-8 Indexed Addressing to Program or Data Memory with Short Offset 3-8
3-9Indexed Addressing to Program or Data Memory3-9
3-10 Direct Addressing for Load Instructions 3-10
3-11 Direct Addressing for Call and Jump Instructions 3-11
3-12 Indirect Addressing 3-12
3-13 Relative Addressing 3-13
3-14 Immediate Addressing 3-14Register Description Format4-4

List of Figures (Continued)

Figure Title PageNumberNumber
5-1 S3C8-Series Interrupt Types 5-2
5-2 S3C84E5/C84E9/P84E9 Interrupt Structure 5-4ROM Vector Address Area5-5Interrupt Function Diagram5-8
System Mode Register (SYM) 5-10
Interrupt Mask Register (IMR) 5-11
5-6
Interrupt Request Priority Groups 5-12
5-7
5-7
Interrupt Priority Register (IPR) 5-13
5-8Interrupt Request Register (IRQ)5-14
6-1 System Flags Register (FLAGS) 6-6
7-1Main Oscillator Circuit (Crystal or Ceramic Oscillator)7-1
Sub-System Oscillator Circuit (Crystal Oscillator) 7-1
System Clock Circuit Diagram 7-2
System Clock Control Register (CLKCON) 7-3
Oscillator Control Register (OSCCON) 7-4
STOP Control Register (STPCON) 7-4
Port 0 High Byte Control Register (POCONH) 9-3
Port 0 Low Byte Control Register (POCONL) 9-4
Port 1 High-Byte Control Register (P1CONH) 9-5
Port 1 Low-Byte Control Register (P1CONL) 9-6
Port 2 High-Byte Control Register (P2CONH) 9-8
Port 2 Low-Byte Control Register (P2CONL) 9-9
Port 2 Interrupt Pending Register (P2INTPND) 9-10
Port 2 Interrupt Control Register (P2INT) 9-11
Port 3 High-Byte Control Register (P3CONH) 9-12
Port 3 Low-Byte Control Register (P3CONL) 9-13
Port 4 High-Byte Control Register (P4CONH) 9-159-12
9-15Port 4 Low-Byte Control Register (P4CONL)
9-139-14Port 4 Interrupt Pending Register (P4INTPND).9-16
Port 4 Interrupt Control Register (P4INT) 9-16
Basic Timer Control Register (BTCON) 10-210-2
11-111-2Basic Timer Block Diagram10-4
Timer A Control Register (TACON) 11-3
Timer A Functional Block Diagram 11-4
Timer B Functional Block Diagram 11-5
Timer B Control Register (TBCON) 11-6
11-5 Timer B Data Registers (TBDATAH, TBDATAL) 11-6
11-6
Timer B Output Flip Flop Waveforms in Repeat Mode 11-8

List of Figures (Concluded)

Page Number

12-1

Timer 1(0,1) Control Register (T1CON0, T1CON1)..12-4
Timer A, Timer 1(0,1) Pending Register (TINTPND) ..12-5
Timer $1(0,1)$ Functional Block Diagram
.12-6
UART Control Register (UARTCON) ..13-3
UART Interrupt Pending Register (UARTPND) ..13-4
UART Data Register (UDATA)..13-5
UART Baud Rate Data Register (BRDATAH, BRDATAL) ...13-6
UART Functional Block Diagram...13-8
Timing Diagram for UART Mode 0 Operation ..13-9
Timing Diagram for UART Mode 1 Operation ...13-10
Timing Diagram for UART Mode 2 Operation ...13-12
Connection Example for Multiprocessor Serial Data Communications........................13-14
Watch Timer Circuit Diagram...14-3
A/D Converter Control Register (ADCON)..15-2
A/D Converter Data Register (ADDATAH, ADDATAL)..15-3
A/D Converter Circuit Diagram ...15-3
A/D Converter Timing Diagram ...15-4
Recommended A/D Converter Circuit for Highest Absolute Accuracy............................15-5
Low Voltage Reset Circuit..16-2
Input Timing for External Interrupts (Ports 4 and 6)...17-5

Stop Mode Release Timing Initiated by RESET...17-8
Stop Mode (Main) Release Timing Initiated by Interrupts ..17-8
Stop Mode (Sub) Release Timing Initiated by Interrupts...17-9
Waveform for UART Timing Characteristics ...17-10
Operating Voltage Range ..17-12
The Circuit Diagram to Improve EFT Characteristics...17-12
42-SDIP-600 Package Dimensions...18-1
44-QFP-1010 Package Dimensions...18-2
S3P84E9 Pin Assignments (42-SDIP Package) ...19-1
S3P84E9 Pin Assignments (44-QFP Package) ..19-2
SMDS+ or SK-1000 Product Configuration...20-2
S3C84E5/S3C84E9/S3P84E9 Target Board Configuration ..20-3
44-Pin Connector pin assignment for TB84E5/84E9...20-5
TB84E5/84E9 Adapter Cable for 44pin Connector Package20-6

List of Tables

Table Title Page
Number Number
1-1 S3C84E5/C84E9/P84E9 Pin Descriptions 1-6
2-1
S3C84E5/C84E9/P84E9 Register Type Summary 2-3
4-14-2Set 1 Registers4-1
Set 1, Bank 0 Registers 4-2
Set 1, Bank 1 Registers 4-3
Interrupt Vectors 5-6
Interrupt Control Register Overview 5-7
Interrupt Source Control and Data Registers 5-9
Instruction Group Summary 6-2
6-3
Flag Notation Conventions 6-8
Instruction Set Symbols 6-8
Instruction Notation Conventions 6-9
OPCODE Quick Reference. 6-10
6-56-6
8-18-2Condition Codes6-12S3C84E5/C84E9/P84E9 Set 1 Register Values After RESET8-2
S3C84E5/C84E9/P84E9 Set 1, Bank 0 Register Values After RESET 8-3
S3C84E5/C84E9/P84E9 Set 1, Bank 1 Register Values After RESET 8-4
S3C84E5/C84E9/P84E9 Port Configuration Overview 9-1
Port Data Register Summary 9-2
Watch Timer Control Register (WTCON): Set 1, Bank 0, FAH, R/W 14-2
Absolute Maximum Ratings 17-2
Input/Output Capacitance. 17-2
D.C. Electrical Characteristics 17-3
A.C. Electrical Characteristics 17-5
Input Timing for RESET. 17-5
17-2
Main Oscillator Frequency (foSC1) 17-6 17-5
Main Oscillator Clock Stabilization Time (t ST1) 17-6 17-6
Sub Oscillator Frequency (fosc2) 17-7
17-8 17-7Subsystem Oscillator (crystal) Stabilization Time (tST2)
17-9 Data Retention Supply Voltage in Stop Mode 17-8
17-10 UART Timing Characteristics in Mode 0 (10 MHz) 17-10
17-11 A/D Converter Electrical Characteristics 17-11
17-12

List of Tables (Continued)

Table Title Page
Number Number
19-1 Descriptions of Pins Used to Read/Write the OTP 19-3
19-2 Comparison of S3P84E9 and S3C84E5/C84E9 Features 19-3
19-3 Operating Mode Selection Criteria 19-3
20-1 Power Selection Settings for TB84E5/84E9. 20-4
20-2 Using Single Header Pins as the Input Path for External Trigger Sources. 20-4
20-3 The Port 0.0 and Port 0.1 selection setting 20-5

List of Programming Tips

Description Page
Number
Chapter 2: Address Spaces
Using the Page Pointer for RAM clear (Page 0, Page 1) 2-6
Setting the Register Pointers 2-10
Using the RPs to Calculate the Sum of a Series of Registers 2-11
Addressing the Common Working Register Area 2-15
Standard Stack Operations Using PUSH and POP 2-20
Chapter 11: $\quad 8$-bit Timer A/B
To Generate 38 kHz, 1/3duty signal through P4.3. 11-9
To generate a one pulse signal through P 4.3 11-10
Using the Timer A. 11-11
Using the Timer B. 11-12
Chapter 12: 16 -bit Timer 1 $(0,1)$
Using the Timer 1(0) 12-7
Chapter 14: Watch Timer
Using the Watch Timer 14-4
Chapter 15: A/D Converter
Configuring A/D Converter. 15-6

List of Register Descriptions

RegisterIdentifier

Full Register Name

PageNumber
ADCON A/D Converter Control Register F7H Set 1, Bank 0 4-5
BTCON Basic Timer Control Register H Set 1 4-6CLKCONFLAGS
IMR
IPH
IPL
Instruction Pointer (High Byte) DAH Set 1. 4-10
Instruction Pointer (Low Byte) DBH Set 1 4-10
System Clock Control Register D4H Set 1 4-7
System Flags Register D5H Set 1 4-8
Interrupt Mask Register DDH Set 1 4-9IPRIRQOSCCONInterrupt Priority Register FFH Set 1, Bank 04-11Interrupt Request Register DCH Set 14-12
POCONHOscillator Control Register FBH Set 1,Bank 04-13
POCONLPort 0 Control Register (High Byte) E6H Set 1, Bank 04-14
P1CONHPort 0 Control Register (Low Byte) E7H Set 1, Bank 0.4-15
Port 1 Control Register (High Byte) E8H Set 1, Bank 0 4-16
P1CONL Port 1 Control Register (Low Byte) E9H Set 1, Bank 0. 4-17
P2CONH Port 2 Control Register (High Byte) EAH Set 1, Bank 0. 4-18
P2CONL Port 2 Control Register (Low Byte) EBH Set 1, Bank 0 4-19
P2INT
P2INTPNDPort 2 Interrupt Control Register ECH Set 1, Bank 04-20
4-21P3CONHPort 2 Interrupt Pending Register EDH Set 1, Bank 0.
Port 3 Control Register (High Byte) EEH Set 1, Bank 0 4-22P3CONL
4-23P4CONHPort 3 Control Register (Low Byte) EFH Set 1, Bank 0.
4-24P4CONLPort 4 Control Register (High Byte) FOH Set 1, Bank 0
Port 4 Control Register (Low Byte) F1H Set 1, Bank 0. 4-25
P4INT
P4INTPNDPort 4 Interrupt Control Register F2H Set 1, Bank 0.4-26
PP Register Page Pointer DFH Set 1.Port 4 Interrupt Pending Register F3H Set 1, Bank 04-27
4-28
4-28RP0
4-29RP1
SPH
SPL
STPCONRegister Pointer 0 D6H Set 1
Register Pointer 1 D7H Set 1. 4-29
Stack Pointer (High Byte) D8H Set 1 4-30
Stack Pointer (Low Byte) D9H Set 1 4-30
Stop Control Register E5H Set 1, Bank 0 4-31
SYM System Mode Register DEH Set 1 4-32T1CON0
Timer 1(0) Control Register E8H Set 1, Bank 1. 4-33
T1CON1 Timer 1(1) Control Register E9H Set 1, Bank 1. 4-34
TACON Timer A Control Register E1H Set 1, Bank 1 4-35
TBCON Timer B Control Register DOH Set 1 4-36
TINTPND Timer A, Timer 1 Interrupt Pending Register EOH Set 1, Bank 1 4-37
UARTCON UART Control Register F6H Set 1, Bank 0. 4-38
UARTPND 4-40
UART Pending and parity control F4H Set 1, Bank 0
Watch Timer Control Register FAH Set 1, Bank $0 \ldots$. WTCON 4-41

List of Instruction Descriptions

Instruction
 Mnemonic

Full Register Name
Page
Number
ADC Add with Carry 6-14
ADD Add. 6-15
AND Logical AND. 6-16
BAND Bit AND. 6-17
BCP Bit Compare. 6-18
BITC Bit Complement 6-19
BITR Bit Reset 6-20
BITS Bit Set. 6-21
BOR Bit OR 6-22
BTJRF Bit Test, Jump Relative on False. 6-23
BTJRT Bit Test, Jump Relative on True. 6-24
BXOR Bit XOR 6-25
CALL Call Procedure 6-26
CCF Complement Carry Flag 6-27
CLR Clear. 6-28
COM Complement 6-29
CP
CPIJECompare.6-30
CPIJNECompare, Increment, and Jump on Equal...6-31
DACompare, Increment, and Jump on Non-Equal.6-32
DA
DEC
DECWDecimal Adjust.6-33
Decimal Adjust. 6-34
Decrement 6-35
DI
Decrement Word 6-36
DIV 6-37Disable Interrupts
Divide (Unsigned) 6-38DJNZ
Decrement and Jump if Non-Zero 6-39EI
ENTER
ENTER
EXIT
Enter. 6-41
Exit. 6-42Enable Interrupts6-40
IDLE
INC
Idle Operation 6-43
Increment 6-44INCW
Increment Word. 6-45IRET
JP
Interrupt Return 6-46Jump.6-47
JR
JR JR JR Jump Relative. 6-48
LD Load. 6-49
LD Load. 6-50
LDB Load Bit. 6-51

List of Instruction Descriptions (Continued)

Instruction Full Register Name Page
Mnemonic Number
LDC/LDE Load Memory 6-52
LDC/LDE Load Memory 6-53
LDCD/LDED Load Memory and Decrement 6-54
LDCI/LDE Load Memory and Increment 6-55
LDCPD/LDEPD Load Memory with Pre-Decrement 6-56
LDCPI/LDEPI Load Memory with Pre-Increment 6-57
LDW Load Word 6-58
MULT Multiply (Unsigned) 6-59
NEXT Next. 6-60
NOP No Operation. 6-61
OR Logical OR 6-62
POPPop from Stack6-63
POPUD POPUD Pop User Stack (Decrementing) 6-64
POPUI Pop User Stack (Incrementing) 6-65
PUSH Push to Stack 6-66
PUSHUD Push User Stack (Decrementing) 6-67
PUSHUI Push User Stack (Incrementing) 6-68
RCF Reset Carry Flag 6-69
RET Return 6-70
RL Rotate Left 6-71
RLC Rotate Left through Carry 6-72
RR Rotate Right. 6-73
RRC Rotate Right through Carry 6-74
SB0 Select Bank 0 6-75
SB1 Select Bank 1 6-76
SBC Subtract with Carry 6-77
SCF Set Carry Flag. 6-78
SRA Shift Right Arithmetic 6-79
SRP/SRP0/SRP1 Set Register Pointer 6-80
STOP Stop Operation 6-81
SUB Subtract 6-82
SWAP Swap Nibbles 6-83
TCM Test Complement under Mask 6-84
TM Test under Mask 6-85
WFI Wate for Interrupt 6-86
XOR Logical Exclusive OR 6-87

PRODUCT OVERVIEW

S3C8-SERIES MICROCONTROLLERS

Samsung's S3C8-series of 8-bit single-chip CMOS microcontrollers offers a fast and efficient CPU, a wide range of integrated peripherals, and various mask-programmable ROM sizes. The major CPU features are:

- Efficient register-oriented architecture
- Selectable CPU clock sources
- Idle and Stop power-down mode released by interrupt or reset
- Built-in basic timer with watchdog function

A sophisticated interrupt structure recognizes up to eight-interrupt levels. Each level can have one or more interrupt sources and vectors. Fast interrupt processing (within a minimum of four CPU clocks) can be assigned to specific interrupt levels.

S3C84E5/C84E9/P84E9 MICROCONTROLLER

The S3C84E5/C84E9/P84E9 single-chip CMOS microcontrollers are fabricated using the highly advanced CMOS process technology based on Samsung's latest CPU architecture.

The S3C84E5 is a microcontroller with a 16K-byte mask-programmable ROM embedded.
The S3C84E9 is a microcontroller with a 32K-byte mask-programmable ROM embedded.
The S3P84E9 is a microcontroller with a 32K-byte OTP ROM embedded.
Using a proven modular design approach, Samsung engineers have successfully developed the S3C84E5/C84E9/P84E9 by integrating the following peripheral modules with the powerful SAM8 core:

- Five programmable I/O ports (42SDIP: 34pins, 44QFP: 36pins)
- Eleven bit-programmable pins for external interrupts.
- One 8-bit basic timer for oscillation stabilization and watchdog function (system reset).
- Two 8-bit timer/counter and Two 16-bit timer/counter with selectable operating modes.
- One asynchronous UART
- 10-bit 8-channel A/D converter

The S3C84E5/C84E9/P84E9 is versatile microcontroller for home appliances and ADC applications, etc. They are currently available in 44-pin QFP and 42-pin SDIP package.

SAMSUNG

FEATURES

CPU

- SAM88RC CPU core

Memory

- 528-bytes internal register file
- 16K/32Kbytes internal program memory (S3C84E5/C84E9:Mask ROM) (S3P84E9:OTP)

Oscillation Sources

- Main clock oscillator (Crystal, Ceramic)
- CPU clock divider ($1 / 1,1 / 2,1 / 8,1 / 16$)
- $32,768 \mathrm{~Hz}$ Sub oscillator for watch timer

Instruction Set

- 78 instructions
- IDLE and STOP instructions added for powerdown modes

Instruction Execution Time

- $\quad 333 \mathrm{~ns}$ at $12-\mathrm{MHz}$ fOSC (minimum)

Interrupts

- 21 interrupt sources with 21 vectors.
- 8 level, 21 vector interrupt structure

I/O Ports

- Total 36 bit-programmable pins (44QFP)

Total 34 bit-programmable pins (42SDIP)

Timers and Timer/Counters

- One programmable 8-bit basic timer (BT) for oscillation stabilization control or watchdog timer function.
- One 8-bit timer/counter (Timer A) with three operating modes; Interval mode, capture mode and PWM mode.
- One 8-bit timer (Timer B) with carrier frequency (or PWM) generator.
- Two 16-bit timer/counter (Timer 10,11) with three operating modes; Interval mode, Capture mode, and PWM mode.

Watch timer

- Real-time and interval time measurement
- Four-frequency outputs for buzzer sound

AID Converter

- 10-bit resolution
- Eight-analog input channels
- 20us conversion speed at $10 \mathrm{MHz} \mathrm{f}_{\mathrm{ADC}}$ clock.

Asynchronous UART

- One Asynchronous UART
- Programmable baud rate generator
- Supports serial data transmit/receive operations with 8-bit, 9-bit in UART

Built-in RESET Circuit (LVR)

- Low-Voltage reset (LVR value: 2.9V)

Oscillation Frequency

- 1 MHz to 12 MHz external crystal oscillator

Operating Temperature Range

- $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Operating Voltage Range

- $\mathrm{V}_{\mathrm{LVR}}$ to 5.5 V

Package Type

- 42 pin SDIP, 44 pin QFP

BLOCK DIAGRAM

Figure 1-1. S3C84E5/C84E9/P84E9 Block Diagram

PIN ASSIGNMENT

Figure 1-2. S3C84E5/C84E9/P84E9 Pin Assignment (44-pin QFP)

PIN ASSIGNMENT

Figure 1-3. S3C84E5/C84E9/P84E9 Pin Assignment (42-pin SDIP)

PIN DESCRIPTIONS

Table 1-1. S3C84E5/C84E9/P84E9 Pin Descriptions

Pin Name	$\begin{aligned} & \text { Pin } \\ & \text { Type } \end{aligned}$	Pin Description	Circuit Type	Pin Number	Share Pins
P0.0-P0.7	I/O	Bit programmable port; input or output mode selected by software; input or push-pull output. Software assignable pull-up resistor. Alternately, can be used as I/O for Timer A, Timer 1(0,1). P0.0 and P0.1 can alternately be used for subsystem oscillator in/out mode selected by software	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{D} \end{aligned}$	$\begin{gathered} 1-2 \\ 38-43 \\ (1-8) \end{gathered}$	XTin, XTout TACAP TACK T1CAP0 T1OUT1 T1CK1 T1CAP1
P1.0-P1.5	I/O	Bit programmable port; input or output mode selected by software; input or push-pull output. Software assignable pull-up resistor. Alternatively can be used as Timer A, Timer 1(0), UART, Watch Timer Buzzer output.	D	$\begin{gathered} 32-37 \\ (37-42) \end{gathered}$	$\begin{gathered} \text { TAOUT } \\ \text { T1CK0 } \\ \text { T1OUT0 } \\ \text { TXD } \\ \text { RXD } \end{gathered}$
P2.0-P2.7	I/O	Bit programmable port; input or output mode selected by software; input or push-pull output. Software assignable pull-up. Alternately, can be used as inputs for external interrupts INT0-INT7. (with noise filters and interrupt controller)	D-1	$\begin{gathered} 13-20 \\ (19-26) \end{gathered}$	INT0-INT7
P3.0-P3.7	I/O	Bit programmable port; input or output mode selected by software; input or push-pull output. Software assignable pull-up. Alternately, can be used as analog inputs for A/D converter modules.	E	$\begin{gathered} 24-31 \\ (19-26) \end{gathered}$	ADC0-ADC7
P4.0-P4.5	I/O	Bit programmable port; input or output mode selected by software; input or push-pull output. Software assignable pull-up. Alternatively can be used as Timer B, inputs for external interrupts INT8-INT10. (with noise filters and interrupt controller)	$\begin{gathered} \hline D-1 \\ D \end{gathered}$	$\begin{gathered} 10,11 \\ 3,4 \\ 44,21 \\ (16-17) \\ (9-10) \end{gathered}$	INT8-INT10 TBPWM

NOTE: Pin numbers shown in parentheses "()" are for the 42-pin SDIP package.

Table 1-1. S3C84E5/C84E9/P84E9 Pin Descriptions (Continued)

Pin Name	$\begin{aligned} & \text { Pin } \\ & \text { Type } \end{aligned}$	Pin Description	Circuit Type	Pin Number	Share Pins
INT0-INT10	I	Input pins for external interrupt. Alternatively used as general-purpose digital input/output port 2,4.	D-1	$\begin{gathered} 13-20,4 \\ 10-11 \\ (19-26) \\ (10,16-17) \end{gathered}$	$\begin{aligned} & \text { P2.0-P2.7 } \\ & \text { P4.0-P4.2 } \end{aligned}$
ADC0-ADC7	1	Analog input pins for A/D converter module. Alternatively used as general-purpose digital input/output port 3.	E	$\begin{gathered} 24-31 \\ (29-36) \end{gathered}$	P3.0-P3.7
AVref, AVss	-	A/D converter reference voltage and ground	-	$\begin{gathered} 22,23 \\ (27,28) \end{gathered}$	-
RxD	1	Serial data RxD pin for receive input and transmit output (mode 0)	D	$\begin{gathered} \hline 33 \\ (38) \\ \hline \end{gathered}$	P1.4
TxD	O	Serial data TxD pin for transmit output and shift clock output (mode 0)	D	$\begin{gathered} 32 \\ (37) \\ \hline \end{gathered}$	P1.5
TACK	I	External clock input pins for timer A	D	39(2)	P0.6
TACAP	1	Capture input pins for timer A	D	38(1)	P0.7
TAOUT	0	Pulse width modulation output pins for timer A	D	37(42)	P1.0
BUZ	0	Buzzer output pin	D	34(39)	P1.3
TBPWM	0	Carrier frequency output pins for timer B	D	3(9)	P4.3
T1CK0	1	External clock input pins for timer 1(0)	D	36(41)	P1.1
T1CAP0	1	Capture input pins for timer 1(0)	D	40(3)	P0.5
T1OUT0	O	Timer 1(0) 16-bit PWM mode output or counter match toggle output pins	D	35(40)	P1.2
T1CK1	I	External clock input pins for timer 1(1)	D	42(3)	P0.3
T1CAP1	1	Capture input pins for timer 1(1)	D	43(5)	P0.2
T1OUT1	0	Timer 1(1) 16-bit PWM mode output or counter match toggle output pins	D	41(4)	P0.4
nRESET	I	System reset pin	B	12(18)	-
TEST	1	Pull-down resistor connected internally	-	9(15)	-
VDD, VSS	-	Power input pins	-	$\begin{gathered} 5,6 \\ (11,12) \end{gathered}$	-
XTin, XTout	I,O	Subsystem oscillator pins	-	$\begin{gathered} 1,2 \\ (7,8) \end{gathered}$	P0.0, P0.1
Xin, Xout	I,O	Main oscillator pins	-	$\begin{gathered} 7,8 \\ (13,14) \end{gathered}$	-

NOTE: Pin numbers shown in parentheses "()" are for the 42-pin SDIP package.

PIN CIRCUITS

Figure 1-4. Pin Circuit Type B (nRESET)

Figure 1-5. Pin Circuit Type C

Figure 1-6. Pin Circuit Type D (P0.2-P0.7, P1, P4.3-P4.5)

Figure 1-7. Pin Circuit Type D-1 (P2, and P4.0-P4.2)

Figure 1-8. Pin Circuit Type E (P3)

Figure 1-9. Pin Circuit Type F (P0.0, P0.1)

ADDRESS SPACES

OVERVIEW

The S3C84E5/C84E9/P84E9 microcontroller has two types of address space:

- Internal program memory (ROM)
- Internal register file (RAM)

A 16-bit address bus supports program memory operations. A separate 8 -bit register bus carries addresses and data between the CPU and the register file.

The S3C84E5/C84E9/P84E9 has an internal 16/32-Kbyte mask-programmable ROM / 32-Kbyte OTP ROM and 528byte RAM.

PROGRAM MEMORY (ROM)

Program memory (ROM) stores program codes or table data. The S3C84E5/84E9 has 16Kbytes and 32Kbytes of internal mask programmable program memory. The program memory address range is therefore $0 \mathrm{H}-3 \mathrm{FFFH}$ and $\mathrm{OH}-$ 7FFFH (see Figure 2-1).

The first 256 bytes of the ROM ($0 \mathrm{H}-0 \mathrm{FFH}$) are reserved for interrupt vector addresses. Unused locations in this address range can be used as normal program memory. If you use the vector address area to store a program code, be careful not to overwrite the vector addresses stored in these locations.

The ROM address at which a program execution starts after a reset is 0100 H .

Figure 2-1. Program Memory Address Space

REGISTER ARCHITECTURE

In the S3C84E5/C84E9/P84E9 implementation, the upper 64-byte area of register files is expanded two 64-byte areas, called set 1 and set 2 . The upper 32 -byte area of set 1 is further expanded two 32 -byte register banks (bank 0 and bank 1), and the lower 32 -byte area is a single 32 -byte common area. set 2 is logically expanded 2 separately addressable register pages, page 0-page 1.

In case of S3C84E5/C84E9/P84E9 the total number of addressable 8-bit registers is 590 . Of these 590 registers, 16 bytes are for CPU and system control registers, 46 bytes are for peripheral control and data registers, 16 bytes are used as a shared working registers, and 512 registers are for general-purpose use.

You can always address set 1 register location, regardless of which of the 2 register pages is currently selected. The set 1 locations, however, can only be addressed using direct addressing modes.

The extension of register space into separately addressable areas (sets, banks, and pages) is supported by various addressing mode restrictions, the select bank instructions, SB0 and SB1, and the register page pointer (PP).

Specific register types and the area (in bytes) that they occupy in the register file are summarized in Table 2-1.

Table 2-1. S3C84E5/C84E9/P84E9 Register Type Summary

Register Type	Number of Bytes
General-purpose registers (including 16-byte common working register area, expanded 2 separately addressable register pages (1Page occupies 192-byte prime register area and the 64-byte set 2 area)	528
CPU and system control registers	
Mapped clock, peripheral, I/O control, and data registers	
Total Addressable Bytes	

simsuni

Figure 2-2. Internal Register File Organization

REGISTER PAGE POINTER (PP)

The S3C8-series architecture supports the logical expansion of the physical 512-byte internal register file (using an 8 -bit data bus) into as many as 2 separately addressable register pages. Page addressing is controlled by the register page pointer (PP, DFH). In the S3C84E5/C84E9/P84E9 microcontroller, a paged register file expansion is implemented for data registers, and the register page pointer must be changed to address other pages.

After a reset, the page pointer's source value (lower nibble) and the destination value (upper nibble) are always "0000", automatically selecting page 0 as the source and destination page for register addressing.

NOTE: A hardware reset operation writes the 4-bit destination and source values shown above to the register page pointer. These values should be modified to other pages.

Figure 2-3. Register Page Pointer (PP)

	LD	PP,\#00H	Destination $\leftarrow 0$, Source $\leftarrow 0$
	SRP	\# 0 COH	
	LD	R0,\#0FFH	Page 0 RAM clear starts
RAMCLO:	CLR	@R0	
	DJNZ	R0,RAMCLO	
	CLR	@R0	$\mathrm{RO}=00 \mathrm{H}$
	LD	PP,\#10H	Destination $\leftarrow 1$, Source $\leftarrow 0$
	LD	R0,\#0FFH	Page 1 RAM clear starts
RAMCL1:	CLR	@R0	
	DJNZ	R0,RAMCL1	
	CLR	@R0	$\mathrm{RO}=00 \mathrm{H}$

REGISTER SET 1

The term set 1 refers to the upper 64 bytes of the register file, locations COH-FFH.
The upper 32-byte area of this 64-byte space (EOH-FFH) is expanded two 32-byte register banks, bank 0 and bank 1. The set register bank instructions, SB0 or SB1, are used to address one bank or the other. A hardware reset operation always selects bank 0 addressing.

The upper two 32-byte areas (bank 0 and bank 1) of set 1 (EOH-FFH) contains 64 mapped system and peripheral control registers. The lower 32-byte area contains 16 system registers (DOH-DFH) and a 16-byte common working register area ($\mathrm{COH}-\mathrm{CFH}$). You can use the common working register area as a "scratch" area for data operations being performed in other areas of the register file.

Registers in set 1 locations are directly accessible at all times using Register addressing mode. The 16-byte working register area can only be accessed using working register addressing (For more information about working register addressing, please refer to Chapter 3, "Addressing Modes.")

REGISTER SET 2

The same 64-byte physical space that is used for set 1 locations $\mathrm{COH}-\mathrm{FFH}$ is logically duplicated to add another 64 bytes of register space. This expanded area of the register file is called set 2. For S3C84E5/C84E9/P84E9, the set 2 address range $(\mathrm{COH}-\mathrm{FFH})$ is accessible on pages $0-1$.

The logical division of set 1 and set 2 is maintained by means of addressing mode restrictions. You can use only Register addressing mode to access set 1 locations. In order to access registers in set 2, you must use Register Indirect addressing mode or Indexed addressing mode.

The set 2 register area is commonly used for stack operations.

PRIME REGISTER SPACE

The lower 192 bytes (00H-BFH) of the S3C84E5/C84E9/P84E9's two 256-byte register pages is called prime register area. Prime registers can be accessed using any of the seven addressing modes (see Chapter 3, "Addressing Modes.")

The prime register area on page 0 is immediately addressable following a reset. In order to address prime registers on pages 0 , or 1 you must set the register page pointer (PP) to the appropriate source and destination values.

Figure 2-4. Set 1, Set 2, Prime Area Register

WORKING REGISTERS

Instructions can access specific 8-bit registers or 16-bit register pairs using either 4-bit or 8-bit address fields. When 4-bit working register addressing is used, the 256-byte register file can be seen by the programmer as one that consists of 328 -byte register groups or "slices." Each slice comprises of eight 8 -bit registers.

Using the two 8-bit register pointers, RP1 and RP0, two working register slices can be selected at any one time to form a 16-byte working register block. Using the register pointers, you can move this 16 -byte register block anywhere in the addressable register file, except for the set 2 area.

The terms slice and block are used in this manual to help you visualize the size and relative locations of selected working register spaces:

- One working register slice is 8 bytes (eight 8-bit working registers, R0-R7 or R8-R15)
- One working register block is 16 bytes (sixteen 8 -bit working registers, R0-R15)

All the registers in an 8-byte working register slice have the same binary value for their five most significant address bits. This makes it possible for each register pointer to point to one of the 24 slices in the register file other than set 2. The base addresses for the two selected 8-byte register slices are contained in register pointers RP0 and RP1.

After a reset, RP0 and RP1 always point to the 16-byte common area in set 1 ($\mathrm{COH}-\mathrm{CFH}$).

Figure 2-5. 8-Byte Working Register Areas (Slices)

USING THE REGISTER POINTERS

Register pointers RP0 and RP1, mapped to addresses D6H and D7H in set 1, are used to select two movable 8-byte working register slices in the register file. After a reset, RP\# point to the working register common area: RP0 points to addresses $\mathrm{C} 0 \mathrm{H}-\mathrm{C} 7 \mathrm{H}$, and RP1 points to addresses $\mathrm{C} 8 \mathrm{H}-\mathrm{CFH}$.

To change a register pointer value, you load a new value to RP0 and or RP1 using an SRP or LD instruction. (see Figures 2-6 and 2-7).

With working register addressing, you can only access those two 8-bit slices of the register file that are currently pointed to by RP0 and RP1. You cannot, however, use the register pointers to select a working register space in set 2, $\mathrm{COH}-\mathrm{FFH}$, because these locations can be accessed only using the Indirect Register or Indexed addressing modes.

The selected 16-byte working register block usually consists of two contiguous 8 -byte slices. As a general programming guideline, it is recommended that RP0 point to the "lower" slice and RP1 point to the "upper" slice (see Figure 2-6).). In some cases, it may be necessary to define working register areas in different (non-contiguous) areas of the register file. In Figure 2-7, RP0 points to the "upper" slice and RP1 to the "lower" slice.

Because a register pointer can point to either of the two 8-byte slices in the working register block, you can flexibly define the working register area to support program requirements.

PROGRAMMING TIP - Setting the Register Pointers

SRP	\#70H	$\mathrm{RPO} \leftarrow 70 \mathrm{H}, \mathrm{RP} 1 \leftarrow 78 \mathrm{H}$
SRP1	\#48H	RP0 \leftarrow no change, RP1 $\leftarrow 48 \mathrm{H}$,
SRP0	\#OAOH	RP0 $\leftarrow 0 \mathrm{AOH}, \mathrm{RP} 1 \leftarrow$ no change
CLR	RP0	RP0 $\leftarrow 00 \mathrm{H}, \mathrm{RP} 1 \leftarrow$ no change
LD	RP1,\#0F8H	$\mathrm{RP} 0 \leftarrow$ no change, RP1 $\leftarrow 0 \mathrm{~F} 8 \mathrm{H}$

Figure 2-6. Contiguous 16-Byte Working Register Block

Figure 2-7. Non-Contiguous 16-Byte Working Register Block

PROGRAMMING TIP - Using the RPs to Calculate the Sum of a Series of Registers

Calculate the sum of registers $80 \mathrm{H}-85 \mathrm{H}$ using the register pointer. The register addresses from 80 H through 85 H contain the values $10 \mathrm{H}, 11 \mathrm{H}, 12 \mathrm{H}, 13 \mathrm{H}, 14 \mathrm{H}$, and 15 H , respectively:

SRP0	\#80H	$\mathrm{RP0} \leftarrow 80 \mathrm{H}$
ADD	R0,R1	$\mathrm{R} 0 \leftarrow \mathrm{R} 0+\mathrm{R} 1$
ADC	R0,R2	$\mathrm{RO} \leftarrow \mathrm{R} 0+\mathrm{R} 2+\mathrm{C}$
ADC	R0,R3	$\mathrm{R} 0 \leftarrow \mathrm{R} 0+\mathrm{R} 3+\mathrm{C}$
ADC	R0,R4	$\mathrm{R} 0 \leftarrow \mathrm{R} 0+\mathrm{R} 4+\mathrm{C}$
ADC	R0,R5	$\mathrm{R} 0 \leftarrow \mathrm{R} 0+\mathrm{R} 5+\mathrm{C}$

The sum of these six registers, 6 FH , is located in the register $\mathrm{R} 0(80 \mathrm{H})$. The instruction string used in this example takes 12 bytes of instruction code and its execution time is 36 cycles. If the register pointer is not used to calculate the sum of these registers, the following instruction sequence would have to be used:

ADD	$80 \mathrm{H}, 81 \mathrm{H}$	$; 80 \mathrm{H} \leftarrow(80 \mathrm{H})+(81 \mathrm{H})$
ADC	$80 \mathrm{H}, 82 \mathrm{H}$	$; 80 \mathrm{H} \leftarrow(80 \mathrm{H})+(82 \mathrm{H})+\mathrm{C}$
ADC	$80 \mathrm{H}, 83 \mathrm{H}$	$; 80 \mathrm{H} \leftarrow(80 \mathrm{H})+(83 \mathrm{H})+\mathrm{C}$
ADC	$80 \mathrm{H}, 84 \mathrm{H}$	$; 80 \mathrm{H} \leftarrow(80 \mathrm{H})+(84 \mathrm{H})+\mathrm{C}$
ADC	$80 \mathrm{H}, 85 \mathrm{H}$	$; 80 \mathrm{H} \leftarrow(80 \mathrm{H})+(85 \mathrm{H})+\mathrm{C}$

Now, the sum of the six registers is also located in register 80 H . However, this instruction string takes 15 bytes of instruction code rather than 12 bytes, and its execution time is 50 cycles rather than 36 cycles.

REGISTER ADDRESSING

The S3C8-series register architecture provides an efficient method of working register addressing that takes full advantage of shorter instruction formats to reduce execution time.

With Register (R) addressing mode, in which the operand value is the content of a specific register or register pair, you can access any location in the register file except for set 2 . With working register addressing, you use a register pointer to specify an 8 -byte working register space in the register file and an 8 -bit register within that space.

Registers are addressed either as a single 8 -bit register or as a paired 16-bit register space. In a 16-bit register pair, the address of the first 8-bit register is always an even number and the address of the next register is always an odd number. The most significant byte of the 16-bit data is always stored in the even-numbered register, and the least significant byte is always stored in the next $(+1)$ odd-numbered register.

Working register addressing differs from Register addressing as it uses a register pointer to identify a specific 8-byte working register space in the internal register file and a specific 8 -bit register within that space.

MSB	LSB
$n=$ Even address	
	$R n+1$

Figure 2-8. 16-Bit Register Pair

Figure 2-9. Register File Addressing

COMMON WORKING REGISTER AREA (COH-CFH)

After a reset, register pointers RP0 and RP1 automatically select two 8-byte register slices in set 1, locations C0HCFH, as the active 16-byte working register block:

$$
\begin{aligned}
& \mathrm{RPO} \rightarrow \mathrm{C} 0 \mathrm{H}-\mathrm{C} 7 \mathrm{H} \\
& \mathrm{RP} 1 \rightarrow \mathrm{C} 8 \mathrm{H}-\mathrm{CFH}
\end{aligned}
$$

This 16-byte address range is called common area. That is, locations in this area can be used as working registers by operations that address any location on any page in the register file. Typically, these working registers serve as temporary buffers for data operations between different pages.

Figure 2-10. Common Working Register Area

PROGRAMMING TIP - Addressing the Common Working Register Area

As the following examples show, you should access working registers in the common area, locations $\mathrm{COH}-\mathrm{CFH}$, using working register addressing mode only.

Examples 1:

1. LD $0 \mathrm{C} 2 \mathrm{H}, 40 \mathrm{H}$; Invalid addressing mode!

Use working register addressing instead:

SRP	$\# 0 \mathrm{COH}$	
LD	R2,40H	R2 $(\mathrm{C} 2 \mathrm{H}) \leftarrow$ the value in location 40 H

Example 2:

ADD 0C3H,\#45H ; Invalid addressing mode!

Use working register addressing instead:

$$
\begin{array}{lll}
\text { SRP } & \# 0 \mathrm{COH} & \\
\text { ADD } & \mathrm{R} 3, \# 45 \mathrm{H} & \mathrm{R} 3(\mathrm{C} 3 \mathrm{H}) \leftarrow \mathrm{R} 3+45 \mathrm{H}
\end{array}
$$

4-BIT WORKING REGISTER ADDRESSING

Each register pointer defines a movable 8-byte slice of working register space. The address information stored in a register pointer serves as an addressing "window" that makes it possible for instructions to access working registers very efficiently using short 4-bit addresses. When an instruction addresses a location in the selected working register area, the address bits are concatenated in the following way to form a complete 8 -bit address:
— The high-order bit of the 4-bit address selects one of the register pointers ("0" selects RP0, "1" selects RP1).

- The five high-order bits in the register pointer select an 8-byte slice of the register space.
- The three low-order bits of the 4-bit address select one of the eight registers in the slice.

As shown in Figure 2-11, the result of this operation is that the five high-order bits from the register pointer are concatenated with the three low-order bits from the instruction address to form the complete address. As long as the address stored in the register pointer remains unchanged, the three bits from the address will always point to an address in the same 8-byte register slice.

Figure 2-12 shows a typical example of 4-bit working register addressing. The high-order bit of the instruction "INC R6" is " 0 ", which selects RP0. The five high-order bits stored in RP0 (01110 B) are concatenated with the three low-order bits of the instruction's 4-bit address (110B) to produce the register address 76H (01110110B).

Figure 2-11. 4-Bit Working Register Addressing

Figure 2-12. 4-Bit Working Register Addressing Example

8-BIT WORKING REGISTER ADDRESSING

You can also use 8-bit working register addressing to access registers in a selected working register area. To initiate 8-bit working register addressing, the upper four bits of the instruction address must contain the value "1100B." This 4-bit value (1100B) indicates that the remaining four bits have the same effect as 4-bit working register addressing.

As shown in Figure 2-13, the lower nibble of the 8-bit address is concatenated in much the same way as for 4-bit addressing. Bit 3 selects either RP0 or RP1, which then supplies the five high-order bits of the final address. The three low-order bits of the complete address are provided by the original instruction.

Figure 2-14 shows an example of 8 -bit working register addressing. The four high-order bits of the instruction address (1100B) specify 8 -bit working register addressing. Bit 3 ("1") selects RP1 and the five high-order bits in RP1 (10101B) become the five high-order bits of the register address. The three low-order bits of the register address (011) are provided by the three low-order bits of the 8-bit instruction address. The five-address bits from RP1 and the three address bits from the instruction are concatenated to form the complete register address, 0ABH (10101011B).

Figure 2-13. 8-Bit Working Register Addressing

Figure 2-14. 8-Bit Working Register Addressing Example

SYSTEM AND USER STACK

The S3C8-series microcontrollers use the system stack for data storage, subroutine calls and returns. The PUSH and POP instructions are used to control system stack operations. The S3C84E5/C84E9/P84E architecture supports stack operations in the internal register file.

Stack Operations

Return addresses for procedure calls, interrupts, and data are stored on the stack. The contents of the PC are saved to stack by a CALL instruction and restored by the RET instruction. When an interrupt occurs, the contents of the PC and the FLAGS register are pushed to the stack. The IRET instruction then pops these values back to their original locations. The stack address value is always decreased by one before a push operation and increased by one after a pop operation. The stack pointer (SP) always points to the stack frame stored on the top of the stack, as shown in Figure 2-15.

Figure 2-15. Stack Operations

User-Defined Stacks

You can freely define stacks in the internal register file as data storage locations. The instructions PUSHUI, PUSHUD, POPUI, and POPUD support user-defined stack operations.

Stack Pointers (SPL, SPH)

Register locations D8H and D9H contain the 16-bit stack pointer (SP) that is used for system stack operations. The most significant byte of the SP address, SP15-SP8, is stored in the SPH register (D8H), and the least significant byte, SP7-SP0, is stored in the SPL register (D9H). After a reset, the SP value is undetermined.

Because only internal memory space is implemented in the S3C84E5/C84E9/P84E, the SPL must be initialized to an 8 -bit value in the range $00 \mathrm{H}-\mathrm{FFH}$. The SPH register is not needed and can be used as a general-purpose register, if necessary.

When the SPL register contains the only stack pointer value (that is, when it points to a system stack in the register file), you can use the SPH register as a general-purpose data register. However, if an overflow or underflow condition occurs as a result of increasing or decreasing the stack address value in the SPL register during normal stack operations, the value in the SPL register will overflow (or underflow) to the SPH register, overwriting any other data that is currently stored there. To avoid overwriting data in the SPH register, you can initialize the SPL value to "FFH" instead of "00H".

PROGRAMMING TIP — Standard Stack Operations Using PUSH and POP

The following example shows you how to perform stack operations in the internal register file using PUSH and POP instructions:

LD	SPL,\#0FFH	$\mathrm{SPL} \leftarrow \mathrm{FFH}$ (Normally, the SPL is set to OFFH by the initialization routine)
	-	
	-	
	-	
PUSH	PP	Stack address 0FEH \leftarrow PP
PUSH	RP0	Stack address 0FDH \leftarrow RP0
PUSH	RP1	Stack address 0FCH \leftarrow RP1
PUSH	R3	Stack address 0FBH \leftarrow R3
	-	
	-	
	-	
POP	R3	$\mathrm{R} 3 \leftarrow$ Stack address 0FBH
POP	RP1	RP1 \leftarrow Stack address 0FCH
POP	RP0	RP0 \leftarrow Stack address 0FDH
POP	PP	$\mathrm{PP} \leftarrow$ Stack address 0FEH

ADDRESSING MODES

OVERVIEW

Instructions that are stored in program memory are fetched for execution using the program counter. Instructions indicate the operation to be performed and the data to be operated on. Addressing mode is the method used to determine the location of the data operand. The operands specified in SAM88RC instructions may be condition codes, immediate data, or a location in the register file, program memory, or data memory.

The S3C8-series instruction set supports seven explicit addressing modes. Not all of these addressing modes are available for each instruction. The seven addressing modes and their symbols are:

- Register (R)
- Indirect Register (IR)
- Indexed (X)
- Direct Address (DA)
- Indirect Address (IA)
- Relative Address (RA)
- Immediate (IM)

REGISTER ADDRESSING MODE (R)

In Register addressing mode (R), the operand value is the content of a specified register or register pair (see Figure 3-1).

Working register addressing differs from Register addressing in that it uses a register pointer to specify an 8-byte working register space in the register file and an 8 -bit register within that space (see Figure 3-2).

Sample Instruction:
DEC CNTR ; Where CNTR is the label of an 8-bit register address

Figure 3-1. Register Addressing

Figure 3-2. Working Register Addressing

INDIRECT REGISTER ADDRESSING MODE (IR)

In Indirect Register (IR) addressing mode, the content of the specified register or register pair is the address of the operand. Depending on the instruction used, the actual address may point to a register in the register file, to program memory (ROM), or to an external memory space (see Figures 3-3 through 3-6).

You can use any 8-bit register to indirectly address another register. Any 16-bit register pair can be used to indirectly address another memory location. Please note, however, that you cannot access locations COH-FFH in set 1 using the Indirect Register addressing mode.

Sample Instruction:
RL @SHIFT ; Where SHIFT is the label of an 8-bit register address

Figure 3-3. Indirect Register Addressing to Register File

INDIRECT REGISTER ADDRESSING MODE (Continued)

Figure 3-4. Indirect Register Addressing to Program Memory

INDIRECT REGISTER ADDRESSING MODE (Continued)

Figure 3-5. Indirect Working Register Addressing to Register File

INDIRECT REGISTER ADDRESSING MODE (Continued)

Sample Instructions:

| LCD | R5,@RR6 | ; Program memory access |
| :--- | :--- | :--- | :--- |
| LDE | R3,@RR14 | ; External data memory access |
| LDE | @RR4, R8 | ; External data memory access |

Figure 3-6. Indirect Working Register Addressing to Program or Data Memory

INDEXED ADDRESSING MODE (X)

Indexed (X) addressing mode adds an offset value to a base address during instruction execution in order to calculate the effective operand address (see Figure 3-7). You can use Indexed addressing mode to access locations in the internal register file or in external memory. Please note, however, that you cannot access locations COH-FFH in set 1 using indexed addressing mode.

In short offset Indexed addressing mode, the 8-bit displacement is treated as a signed integer in the range -128 to +127 . This applies to external memory accesses only (see Figure 3-8.)

For register file addressing, an 8-bit base address provided by the instruction is added to an 8-bit offset contained in a working register. For external memory accesses, the base address is stored in the working register pair designated in the instruction. The 8 -bit or 16 -bit offset given in the instruction is then added to that base address (see Figure 3-9).

The only instruction that supports indexed addressing mode for the internal register file is the Load instruction (LD). The LDC and LDE instructions support indexed addressing mode for internal program memory and for external data memory, when implemented.

Sample Instruction:
LD R0, \#BASE[R1] ; Where BASE is an 8-bit immediate value

Figure 3-7. Indexed Addressing to Register File

simsunf

INDEXED ADDRESSING MODE (Continued)

Figure 3-8. Indexed Addressing to Program or Data Memory with Short Offset

INDEXED ADDRESSING MODE (Continued)

Figure 3-9. Indexed Addressing to Program or Data Memory

DIRECT ADDRESS MODE (DA)

In Direct Address (DA) mode, the instruction provides the operand's 16-bit memory address. Jump (JP) and Call (CALL) instructions use this addressing mode to specify the 16-bit destination address that is loaded into the PC whenever a JP or CALL instruction is executed.

The LDC and LDE instructions can use Direct Address mode to specify the source or destination address for Load operations to program memory (LDC) or to external data memory (LDE), if implemented.

Figure 3-10. Direct Addressing for Load Instructions

DIRECT ADDRESS MODE (Continued)

Figure 3-11. Direct Addressing for Call and Jump Instructions

INDIRECT ADDRESS MODE (IA)

In Indirect Address (IA) mode, the instruction specifies an address located in the lowest 256 bytes of the program memory. The selected pair of memory locations contains the actual address of the next instruction to be executed. Only the CALL instruction can use the Indirect Address mode.

Because the Indirect Address mode assumes that the operand is located in the lowest 256 bytes of program memory, only an 8-bit address is supplied in the instruction; the upper bytes of the destination address are assumed to be all zeros.

Sample Instruction:
CALL \#40H ; The 16-bit value in program memory addresses 40 H and 41 H is the subroutine start address.

Figure 3-12. Indirect Addressing

RELATIVE ADDRESS MODE (RA)

In Relative Address (RA) mode, a twos-complement signed displacement between -128 and +127 is specified in the instruction. The displacement value is then added to the current PC value. The result is the address of the next instruction to be executed. Before this addition occurs, the PC contains the address of the instruction immediately following the current instruction.

Several program control instructions use the Relative Address mode to perform conditional jumps. The instructions that support RA addressing are BTJRF, BTJRT, DJNZ, CPIJE, CPIJNE, and JR.

Figure 3-13. Relative Addressing

IMMEDIATE MODE (IM)

In Immediate (IM) addressing mode, the operand value used in the instruction is the value supplied in the operand field itself. The operand may be one byte or one word in length, depending on the instruction used. Immediate addressing mode is useful for loading constant values into registers.

Figure 3-14. Immediate Addressing

4

CONTROL REGISTERS

OVERVIEW

Control register descriptions are arranged in alphabetical order according to register mnemonic. More detailed information about control registers is presented in the context of the specific peripheral hardware descriptions in Part II of this manual.

The locations and read/write characteristics of all mapped registers in the S3C84E5/C84E9/P84E9 register file are listed in Table 4-1. The hardware Reset value for each mapped register is described in Chapter 8, RESET and Power-Down."

Table 4-1. Set 1 Registers

Register Name	Mnemonic	Decimal	Hex	R/W
Timer B control register	TBCON	208	D0H	R/W
Timer B data register (High Byte)	TBDATAH	209	D1H	R/W
Timer B data register (Low Byte)	TBDATAL	210	D2H	R/W
Basic timer control register	BTCON	211	D3H	R/W
Clock control register	CLKCON	212	D4H	R/W
System flags register	FLAGS	213	D5H	R/W
Register pointer 0	RP0	214	D6H	R/W
Register pointer 1	RP1	215	D7H	R/W
Stack pointer (High Byte)	SPH	216	D8H	R/W
Stack pointer (Low Byte)	SPL	217	D9H	R/W
Instruction pointer (High Byte)	IPH	218	DAH	R/W
Instruction pointer (Low Byte)	IPL	219	DBH	R/W
Interrupt request register	IRQ	220	DCH	R
Interrupt mask register	IMR	221	DDH	R/W
System mode register	SYM	222	DEH	R/W
Register page pointer	PP	223	DFH	R/W

Table 4-2. Set 1, Bank 0 Registers

Register Name	Mnemonic	Decimal	Hex	R/W
Port 0 data register	P0	224	EOH	R/W
Port 1 data register	P1	225	E1H	R/W
Port 2 data register	P2	226	E2H	R/W
Port 3 data register	P3	227	E3H	R/W
Port 4 data register	P4	228	E4H	R/W
STOP control register	STPCON	229	E5H	R/W
Port 0 control register (High Byte)	POCONH	230	E6H	R/W
Port 0 control register (Low Byte)	P0CONL	231	E7H	R/W
Port 1 control register (High Byte)	P1CONH	232	E8H	R/W
Port 1 control register (Low Byte)	P1CONL	233	E9H	R/W
Port 2 control register (High Byte)	P2CONH	234	EAH	R/W
Port 2 control register (Low Byte)	P2CONL	235	EBH	R/W
Port 2 interrupt control register	P2INT	236	ECH	R/W
Port 2 interrupt/pending register	P2INTPND	237	EDH	R/W
Port 3 control register (High Byte)	P3CONH	238	EEH	R/W
Port 3 control register (Low Byte)	P3CONL	239	EFH	R/W
Port 4 control register (High Byte)	P4CONH	240	FOH	R/W
Port 4 control register (Low Byte)	P4CONL	241	F1H	R/W
Port 4 interrupt control register	P4INT	242	F2H	R/W
Port 4 interrupt/pending register	P4INTPND	243	F3H	R/W
UART pending register	UARTPND	244	F4H	R/W
UART data register	UDATA	245	F5H	R/W
UART control register	UARTCON	246	F6H	R/W
A/D converter control register	ADCON	247	F7H	R/W
A/D converter data register (High Byte)	ADDATAH	248	F8H	R
A/D converter data register (Low Byte)	ADDATAL	249	F9H	R
Watch timer control register	WTCON	250	FAH	R/W
Oscillator control register	OSCCON	251	FBH	R/W
Location FCH is factory use only				
Basic timer counter register	BTCNT	253	FDH	R
Location FEH is not mapped				
Interrupt priority register	IPR	255	FFH	R/W

Table 4-3. Set 1, Bank 1 Registers

Register Name	Mnemonic	Decimal	Hex	R/W
Timer A, Timer 1 interrupt pending register	TINTPND	224	E0H	R/W
Timer A control register	TACON	225	E1H	R/W
Timer A data register	TADATA	226	E2H	R/W
Timer A counter register	TACNT	227	E3H	R
Timer 1(0) data register (High Byte)	T1DATAH0	228	E4H	R/W
Timer 1(0) data register (Low Byte)	T1DATAL0	229	E5H	R/W
Timer 1(1) data register (High Byte)	T1DATAH1	230	E6H	R/W
Timer 1(1) data register (Low Byte)	T1DATAL1	231	E7H	R/W
Timer 1(0) control register	T1CON0	232	E8H	R/W
Timer 1(1) control register	T1CON1	233	E9H	R/W
Timer 1(0) counter register (High Byte)	T1CNTH0	234	EAH	R
Timer 1(0) counter register (Low Byte)	T1CNTL0	235	EBH	R
Timer 1(1) counter register (High Byte)	T1CNTH1	236	ECH	R
Timer 1(1) counter register (Low Byte)	T1CNTL1	237	EDH	R
UART baud rate data register (High Byte)	BRDATAH	238	EEH	R/W
UART baud rate data register (Low Byte)	BRDATAL	239	EFH	R/W
Location F0H - FFH are not mapped				

Bit number(s) that is/are appended to the register name for bit addressing

Name of individual bit or related bits

Register location
Register address in the internal (hexadecimal) register file

Bit Identifier
RESET Value
Read/Write

. 7	. 6	. 5	. 4	. 3	. 2	. 1	. 0
x	x	x	x	x	x		>
Register addressing mode only				R/W	R/W	R	R/W

Carry Flag (C)

0	Operation does not generate a carry or borrow condition
0	Operation generates carry-out or borrow into high-order bit 7

Zero Flag (Z)

0	Operation result is a non-zero value	
0	Operation result is zero	

$\rightarrow .5$

Sign Flag (S)

0	Operation generates positive number (MSB = "0")
0	Operation generates negative number (MSB = "1")

Description of the effect of specific bit settings

RESET value notation:
'-' = Not used
' x ' = Undetermined value
'0' = Logic zero
Bit number:
$\mathrm{MSB}=\mathrm{Bit} 7$
'1' = Logic one LSB $=$ Bit 0

Figure 4-1. Register Description Format

ADCON - A/D Converter Control Register

Bit Identifier
Reset Value
Read/Write
Addressing Mode
. 7
.6-. 4
.3
End-of-Conversion Bit (Read-only)

0	A/D conversion operation is in progress
1	A/D conversion operation is complete

.2-. 1
.0

Clock Source Selection Bits

0	0	$\mathrm{fxx} / 16$
0	1	$\mathrm{fxx} / 8$
1	0	$\mathrm{fxx} / 4$
1	1	fxx

Start or Enable Bit

0	Disable operation
1	Start operation

Bit Identifier
Reset Value
Read/Write
Addressing Mode

.7	.6	.5	.4	.3	.2	.1	.0
0	0	0	0	0	0	0	0
R/W							
Register addressing mode only							

.7-. 4
Watchdog Timer Function Disable Code (for System Reset)

1	0	1	0	Disable watchdog timer function
Other Values				Enable watchdog timer function

.3-. 2
Basic Timer Input Clock Selection Bits

0	0	$\mathrm{fxx} / 4096^{(3)}$
0	1	$\mathrm{fxx} / 1024$
1	0	$\mathrm{fxx} / 128$
1	1	$\mathrm{fxx} / 1$ (Not used)

Basic Timer Counter Clear Bit ${ }^{(1)}$

0	No effect
1	Clear the basic timer counter value

.0
Clock Frequency Divider Clear Bit for Basic Timer ${ }^{(2)}$

0	No effect
1	Clear both clock frequency dividers

NOTES:

1. When you write a " 1 " to BTCON. 1 , the basic timer counter value is cleared to " 00 H ". Immediately following the write operation, the BTCON. 1 value is automatically cleared to " 0 ".
2. When you write a "1" to BTCON.0, the corresponding frequency divider is cleared to "00H". Immediately following the write operation, the BTCON. 0 value is automatically cleared to " 0 ".
3. The fxx is selected clock for system (main OSC. or sub OSC.).

CLKCON - System Clock Control Register

D4H
Set 1

Bit Identifier
Reset Value
Read/Write
Addressing Mode

.7	.6	.5	.4	.3	.2	.1	.0
0	0	0	0	0	0	0	0
-	-	-	R / W	R / W	-	-	-

Register addressing mode only
.7-. 5
Not used for the S3C84E5/C84E9/P84E9 (must keep always 0)
.4-. 3
CPU Clock (System Clock) Selection Bits (note)

0	0	$\mathrm{fxx} / 16$
0	1	$\mathrm{fxx} / 8$
1	0	$\mathrm{fxx} / 2$
1	1	$\mathrm{fxx} / 1$ (non-divided)

.2-. 0
Not used for the S3C84E5/C84E9/P84E9 (must keep always 0)
NOTE: After a reset, the slowest clock (divided by 16) is selected as the system clock. To select faster clock speeds, load the appropriate values to CLKCON. 3 and CLKCON.4.

Bit Identifier
Reset Value
Read/Write
Addressing Mode

.7	.6	.5	.4	.3	.2	.1	.0
x	x	x	x	x	x	0	0

R/W R/W R/W R/W R/W R/W R R R
Register addressing mode only
. 7
Carry Flag (C)

0	Operation does not generate a carry or underflow condition
1	Operation generates a carry-out or underflow into high-order bit 7

Zero Flag (Z)

0	Operation result is a non-zero value
1	Operation result is zero

Sign Flag (S)

0	Operation generates a positive number $(\mathrm{MSB}=" 0 ")$
1	Operation generates a negative number $(\mathrm{MSB}=" 1 ")$

.4
. 3
Overflow Flag (V)

0	Operation result is $\leq+127$ or ≥-128
1	Operation result is $>+127$ or <-128

Decimal Adjust Flag (D)

0	Add operation completed
1	Subtraction operation completed

. 2
.1
. 0
Half-Carry Flag (H)

0	No carry-out of bit 3 or no underflow into bit 3 by addition or subtraction
1	Addition generated carry-out of bit 3 or subtraction generated underflow into bit 3

Fast Interrupt Status Flag (FIS)

0	Interrupt return (IRET) in progress (when read)
1	Fast interrupt service routine in progress (when read)

Bank Address Selection Flag (BA)

0	Bank 0 is selected
1	Bank 1 is selected

.7	.6	.5	.4	.3	.2	.1	.0
x							
R / W							

Register addressing mode only

Interrupt Level 7 (IRQ7) Enable Bit

0	Disable (mask)
1	Enable (un-mask)

Interrupt Level 6 (IRQ6) Enable Bit

0	Disable (mask)
1	Enable (un-mask)

.5
Interrupt Level 5 (IRQ5) Enable Bit

0	Disable (mask)
1	Enable (un-mask)

. 4
Interrupt Level 4 (IRQ4) Enable Bit

0	Disable (mask)
1	Enable (un-mask)

.3
Interrupt Level 3 (IRQ3) Enable Bit

0	Disable (mask)
1	Enable (un-mask)

. 2
Interrupt Level 2 (IRQ2) Enable Bit

0	Disable (mask)
1	Enable (un-mask)

.1
Interrupt Level 1 (IRQ1) Enable Bit

0	Disable (mask)
1	Enable (un-mask)

. 0 Interrupt Level 0 (IRQO) Enable Bit

0	Disable (mask)
1	Enable (un-mask)

NOTE: When an interrupt level is masked, any interrupt requests that may be issued are not recognized by the CPU.

Bit Identifier
Reset Value
Read/Write
Addressing Mode

. 7	. 6	. 5	. 4	. 3	. 2	. 1	. 0
x	x	x	x	x	x	x	x
R/W							

.7-. 0
Instruction Pointer Address (High Byte)
The high-byte instruction pointer value is the upper eight bits of the 16-bit instruction pointer address (IP15-IP8). The lower byte of the IP address is located in the IPL register (DBH).

IPL — Instruction Pointer (Low Byte)

DBH

Bit Identifier

Reset Value
Read/Write
Addressing Mode

.7	.6	.5	.4	.3	.2	.1	.0
x	x	x	x	x	x	x	x
R / W							
Register addressing mode only							

.7-. 0
Instruction Pointer Address (Low Byte)
The low-byte instruction pointer value is the lower eight bits of the 16-bit instruction pointer address (IP7-IP0). The upper byte of the IP address is located in the IPH register (DAH).

Bit Identifier
Reset Value
Read/Write
Addressing Mode

.7	.6	.5	.4	.3	.2	.1	.0
x	x	x	x	x	x	x	x
R/W	R / W						
Register addressing mode only							

.7, .4, and . 1
Priority Control Bits for Interrupt Groups A, B, and C

0	0	0	Group priority undefined
0	0	1	B > C > A
0	1	0	A $>$ B $>$ C
0	1	1	B $>$ A $>$ C
1	0	0	$C>$ A $>$ B
1	0	1	C $>$ B $>$ A
1	1	0	A $>$ C $>$ B
1	1	1	Group priority undefined

. 6
Interrupt Subgroup C Priority Control Bit

0	IRQ6 $>$ IRQ7
1	IRQ7 $>$ IRQ6

. 5
Interrupt Group C Priority Control Bit

0	$\mathrm{IRQ5}>(\mathrm{IRQ6}, \mathrm{IRQ} 7)$
1	$(\mathrm{IRQ6}, \mathrm{IRQ} 7)>\mathrm{IRQ5}$

. 3
Interrupt Subgroup B Priority Control Bit

0	$\mathrm{IRQ3}>\mathrm{IRQ4}$
1	$\mathrm{IRQ4}>\mathrm{IRQ3}$

. 2
Interrupt Group B Priority Control Bit

0	$\mathrm{IRQ2}>(\mathrm{IRQ} 3, \mathrm{IRQ4})$
1	$(\mathrm{IRQ} 3, \mathrm{IRQ4})>\mathrm{IRQ2}$

. 0
Interrupt Group A Priority Control Bit

0	IRQ0 $>$ IRQ1
1	IRQ1 $>$ IRQ0

IRQ - Interrupt Request Register						DCH			Set 1 . 0
Bit Identifier	. 7	7	. 6	. 5	. 4	. 3	. 2	. 1	
Reset Value	0		0	0	0	0	0	0	0
Read/Write	R	R	R	R	R	R	R	R	R
Addressing Mode	Register addressing mode only								
. 7	Interrupt Level 7 (IRQ7) Request Pending Bit								
	0	Not pending							
	1	Pending							
. 6	Interrupt Level 6 (IRQ6) Request Pending Bit								
	0	Not pending							
	1	Pending							
. 5	Interrupt Level 5 (IRQ5) Request Pending Bit								
	0	Not pending							
	1	Pending							
. 4	Interrupt Level 4 (IRQ4) Request Pending Bit								
	0	Not pending							
	1	Pending							
. 3	Interrupt Level 3 (IRQ3) Request Pending Bit								
	0	Not pending							
	1	Pending							
. 2	Interrupt Level 2 (IRQ2) Request Pending Bit								
	0	Not pending							
	1	Pending							
. 1	Interrupt Level 1 (IRQ1) Request Pending Bit								
	0	Not pending							
	1	Pending							
. 0	Interrupt Level 0 (IRQ0) Request Pending Bit								
	0	Not pending							
	1	Pending							

OSCCON — Oscillator Control Register

FBH Set 1, Bank 0

Bit Identifier

Reset Value

Read/Write
Addressing Mode

.7	.6	.5	.4	.3	.2	.1	.0
0	0	0	0	0	0	0	0
-	-	-	R / W	R / W	R / W	-	R / W

Register addressing mode only
.7-. 5
Not used for the S3C84E5/C84E9/P84E9 (must keep always 0)
. 4
Sub-system Oscillator Driving Ability Control Bit

0	Strong driving ability
1	Normal driving ability

. 3
Main System Oscillator Control Bit

0	Main System Oscillator RUN
1	Main System Oscillator STOP

. 2
Sub System Oscillator Control Bit

0	Sub system oscillator RUN
1	Sub system oscillator STOP

.1
Not used for the S3C84E5/C84E9/P84E9 (must keep always 0)
. 0
System Clock Selection Bit

0	Main oscillator select
1	Subsystem oscillator select

Bit Identifier
Reset Value
Read/Write
Addressing Mode

| .7 | .6 | .5 | .4 | .3 | $\mathbf{. 2}$ | . $\mathbf{1}$ | . $\mathbf{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| R/W |
| Register addressing mode only | | | | | | | |

.7-. 6
P0.7/TACAP Configuration Bits

0	0	Input mode with pull-up; TACAP input
0	1	Input mode; TACAP input
1	X	Push-pull output mode

P0.6/TACK Configuration Bits

0	0	Input mode with pull-up; TACK input
0	1	Input mode; TACK input
1	X	Push-pull output mode

P0.5/T1CAP0 Configuration Bits

0	0	Input mode with pull-up; T1CAP0 input
0	1	Input mode; T1CAP0 input
1	X	Push-pull output mode

P0.4/T1OUT1 Configuration Bits

0	0	Input mode with pull-up
0	1	Input mode
1	0	Push-pull output mode
1	1	Alternative function mode: T1OUT1 output

P1CONH — Port 1 Control Register (High Byte)

E8H

Bit Identifier
Reset Value
Read/Write
Addressing Mode

.7	.6	.5	.4	.3	.2	.1	.0
0	0	0	0	0	0	0	0
-	-	-	-	R / W	R / W	R / W	R / W

Register addressing mode only

$$
\text { .7-. } 4
$$

Not used for the S3C84E5/C84E9/P84E9 (must keep always 0)
.3-. 2
P1.5/TXD Configuration Bits

0	0	Input mode with pull-up
0	1	Input mode
1	0	Push-pull output mode
1	1	Alternative function mode: TXD output

.1-. 0
P1.4/RXD Configuration Bits

0	0	Input mode with pull-up; RXD input
0	1	Input mode; RXD input
1	0	Push-pull output mode
1	1	Alternative function mode: RXD output

P1CONL - Port 1 Control Register (Low Byte)							E9H	Set 1, Bank 0	
Bit Identifier			. 6	. 5	. 4	. 3	. 2	. 1	. 0
Reset Value	0		0	0	0	0	0	0	0
Read/Write	R/W		R/W						
Addressing Mode	Register addressing mode only								
.7-. 6	P1.3/BZOUT Configuration Bits								
	0	0	Input mode with pull-up						
	0	1	Input mode						
	1	0	Push-pull output mode						
	1	1	Alternative function mode: BZOUT output						

.5-. 4
.1-. 0

P1.2/T1OUTO Configuration Bits

0	0	Input mode with pull-up
0	1	Input mode
1	0	Push-pull output mode
1	1	Alternative function mode: T1OUT0 output

P1.1/T1CK0 Configuration Bits

0	0	Input mode with pull-up; T1CK0 input
0	1	Input mode; T1CK0 input
1	X	Push-pull output mode

P1.0/TAOUT Configuration Bits

0	0	Input mode with pull-up
0	1	Input mode
1	0	Push-pull output mode
1	1	Alternative function mode: TAOUT output

Bit Identifier
Reset Value
Read/Write
Addressing Mode

.7	.6	.5	.4	. $\mathbf{3}$. $\mathbf{2}$. $\mathbf{1}$.0
0	0	0	0	0	0	0	0
R/W							
Register addressing mode only							

.7-. 6
P2.7/INT7

0	0	Input mode with pull-up; falling edge interrupt (INT7)
0	1	Input mode; falling edge interrupt (INT7)
1	0	Input mode; rising edge interrupt (INT7)
1	1	Push-pull output mode

.5-. 4
P2.6/ INT6

0	0	Input mode with pull-up; falling edge interrupt (INT6)
0	1	Input mode; falling edge interrupt (INT6)
1	0	Input mode; rising edge interrupt (INT6)
1	1	Push-pull output mode

P2.5/ INT5

0	0	Input mode with pull-up; falling edge interrupt (INT5)
0	1	Input mode; falling edge interrupt (INT5)
1	0	Input mode; rising edge interrupt (INT5)
1	1	Push-pull output mode

P2.4/INT4

0	0	Input mode with pull-up; falling edge interrupt (INT4)
0	1	Input mode; falling edge interrupt (INT4)
1	0	Input mode; rising edge interrupt (INT4)
1	1	Push-pull output mode

P2CONL — Port 2 Control Register (Low Byte)

EBH Set 1, Bank 0

Bit Identifier

Reset Value

Read/Write
Addressing Mode

| . $\mathbf{7}$ | .6 | .5 | .4 | . $\mathbf{3}$ | $\mathbf{. 2}$ | . $\mathbf{1}$ | . $\mathbf{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| R/W |
| Register addressing mode only | | | | | | | |

.7-. 6
P2.3/INT3

0	0	Input mode with pull-up; falling edge interrupt (INT3)
0	1	Input mode; falling edge interrupt (INT3)
1	0	Input mode; rising edge interrupt (INT3)
1	1	Push-pull output mode

.5-. 4
P2.2/INT2

0	0	Input mode with pull-up; falling edge interrupt (INT2)
0	1	Input mode; falling edge interrupt (INT2)
1	0	Input mode; rising edge interrupt (INT2)
1	1	Push-pull output mode

.3-. 2
P2.1/INT1

0	0	Input mode with pull-up; falling edge interrupt (INT1)
0	1	Input mode; falling edge interrupt (INT1)
1	0	Input mode; rising edge interrupt (INT1)
1	1	Push-pull output mode

.1-. 0

P2.0/INTO

0	0	Input mode with pull-up; falling edge interrupt (INTO)
0	1	Input mode; falling edge interrupt (INTO)
1	0	Input mode; rising edge interrupt (INTO)
1	1	Push-pull output mode

P2INT - Port 2 Interrupt Control Register

ECH Set 1, Bank 0

Bit Identifier
Reset Value
Read/Write
Addressing Mode

.7	.6	.5	.4	. $\mathbf{3}$	$\mathbf{. 2}$	$\mathbf{. 1}$. $\mathbf{0}$
0	0	0	0	0	0	0	0
R/W							
Register addressing mode only							

. 7
P2.7 External Interrupt (INT7) Enable Bit

0	Disable interrupt
1	Enable interrupt

P2.6 External Interrupt (INT6) Enable Bit

0	Disable interrupt
1	Enable interrupt

P2.5 External Interrupt (INT5) Enable Bit

0	Disable interrupt
1	Enable interrupt

. 4
. 3
. 2
.1
. 0

P2.4 External Interrupt (INT4) Enable Bit

0	Disable interrupt
1	Enable interrupt

P2.3 External Interrupt (INT3) Enable Bit

0	Disable interrupt
1	Enable interrupt

P2.2 External Interrupt (INT2) Enable Bit

0	Disable interrupt
1	Enable interrupt

P2.1 External Interrupt (INT1) Enable Bit

0	Disable interrupt
1	Enable interrupt

P2.0 External Interrupt (INTO) Enable Bit

0	Disable interrupt
1	Enable interrupt

P2INTPND	t 2 In	nterrupt P	ing			EDH		ank 0
Bit Identifier	. 7	. 6	. 5	. 4	. 3	. 2	. 1	. 0
Reset Value	0	0	0	0	0	0	0	0
Read/Write	R/W	V/W	R/W	R/W	R/W	R/W	R/W	R/W
Addressing Mode	Register addressing mode only							
. 7	P2.7/PND7 Interrupt Pending Bit							
	0 In	Interrupt request is not pending, pending bit clear when write 0						
	1 In	Interrupt request is pending						
. 6	P2.6/PND6 Interrupt Pending Bit							
	0 In	Interrupt request is not pending, pending bit clear when write 0						
	1 In	Interrupt request is pending						
. 5	P2.5/PND5 Interrupt Pending Bit							
	0 In	Interrupt request is not pending, pending bit clear when write 0						
	1 In	Interrupt request is pending						
. 4	P2.4/PND4 Interrupt Pending Bit							
	0 In	Interrupt request is not pending, pending bit clear when write 0						
	1 In	Interrupt request is pending						
. 3	P2.3/PND3 Interrupt Pending Bit							
	0 In	Interrupt request is not pending, pending bit clear when write 0						
	1 In	Interrupt request is pending						
. 2	P2.2/PND2 Interrupt Pending Bit							
	0 In	Interrupt request is not pending, pending bit clear when write 0						
	1 In	Interrupt request is pending						
. 1	P2.1/PND1 Interrupt Pending Bit							
	0 O In	Interrupt request is not pending, pending bit clear when write 0						
	1 In	Interrupt request is pending						
. 0	P2.0/PNDO Interrupt Pending Bit							
	0 In	Interrupt request is not pending, pending bit clear when write 0						
	1 In	Interrupt request is pending						

P3CONH — Port 3 Control Register (High Byte)

EEH Set 1, Bank 0

Bit Identifier
Reset Value
Read/Write
Addressing Mode

| . $\mathbf{7}$ | $\mathbf{. 6}$ | $\mathbf{. 5}$ | . $\mathbf{4}$ | $\mathbf{. 3}$ | $\mathbf{. 2}$ | $\mathbf{. 1}$ | $\mathbf{. 0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| R/W |
| Register addressing mode only | | | | | | | |

.7-. 6
P3.7/ADC7

0	0	Input mode with pull-up
0	1	Input mode
1	0	Push-pull output mode
1	1	Alternative function mode: ADC7 input

.5-. 4
P3.6/ADC6

0	0	Input mode with pull-up
0	1	Input mode
1	0	Push-pull output mode
1	1	Alternative function mode: ADC6 input

P3.5/ADC5

0	0	Input mode with pull-up
0	1	Input mode
1	0	Push-pull output mode
1	1	Alternative function mode: ADC5 input

P3.4/ADC4

0	0	Input mode with pull-up
0	1	Input mode
1	0	Push-pull output mode
1	1	Alternative function mode: ADC4 input

P3CONL — Port 3 Control Register (Low Byte)

EFH Set 1, Bank 0

Bit Identifier

Reset Value

Read/Write
Addressing Mode

.7	.6	.5	.4	.3	.2	.1	.0
0	0	0	0	0	0	0	0
R/W							
Register addressing mode only							

.7-. 6
.5-. 4
.3-. 3
P3.1/ADC1

0	0	Input mode with pull-up
0	1	Input mode
1	0	Push-pull output mode
1	1	Alternative function mode: ADC1 input

.1-. 0
P3.2/ADC2

0	0	Input mode with pull-up
0	1	Input mode
1	0	Push-pull output mode
1	1	Alternative function mode: ADC2 input

P3.3/ADC3

0	0	Input mode with pull-up
0	1	Input mode
1	0	Push-pull output mode
1	1	Alternative function mode: ADC3 input

P3.0/ADC0

0	0	Input mode with pull-up
0	1	Input mode
1	0	Push-pull output mode
1	1	Alternative function mode: ADCO input

Bit Identifier
Reset Value
Read/Write
Addressing Mode

.7	.6	.5	.4	.3	.2	.1	.0
0	0	0	0	0	0	0	0
-	-	-	-	R/W	R/W	R/W	R/W

Register addressing mode only
.7-. 4
Not used for the S3C84E5/C84E9/P84E9 (must keep always 0)
.3-. 2
P4.5

0	0	Input mode with pull-up
0	1	Input mode
1	X	Push-pull output mode

.1-. 0
P4.4

0	0	Input mode with pull-up
0	1	Input mode
1	X	Push-pull output mode

P4CONL — Port 4 Control Register (Low Byte)

F1H Set 1, Bank 0

Bit Identifier
Reset Value

Read/Write
Addressing Mode

.7	.6	.5	.4	.3	.2	.1	.0
0	0	0	0	0	0	0	0
R/W							
Register addressing mode only							

.7-. 6
P4.3/TBPWM

0	0	Input mode with pull-up
0	1	Input mode
1	0	Push-pull output mode
1	1	Alternative function mode: TBPWM output

P4.2/INT10

0	0	Input mode with pull-up; falling edge interrupt (INT10)
0	1	Input mode; falling edge interrupt (INT10)
1	0	Input mode; rising edge interrupt (INT10)
1	1	Push-pull output mode

P4.1/INT9

0	0	Input mode with pull-up; falling edge interrupt (INT9)
0	1	Input mode; falling edge interrupt (INT9)
1	0	Input mode; rising edge interrupt (INT9)
1	1	Push-pull output mode

P4.0/INT8

0	0	Input mode with pull-up; falling edge interrupt (INT8)
0	1	Input mode; falling edge interrupt (INT8)
1	0	Input mode; rising edge interrupt (INT8)
1	1	Push-pull output mode

P4INT — Port 4 Interrupt Control Register

Bit Identifier
Reset Value
Read/Write
Addressing Mode

.7	.6	.5	.4	.3	.2	.1	.0
0	0	0	0	0	0	0	0
-	-	-	-	-	R / W	R / W	R / W

Register addressing mode only
.7-. 3
Not used for the S3C84E5/C84E9/P84E9 (must keep always 0)
. 2
P4.2 External Interrupt (INT10) Enable Bit

0	Disable interrupt
1	Enable interrupt

.1
P4.1 External Interrupt (INT9) Enable Bit

0	Disable interrupt
1	Enable interrupt

. 0
P4.0 External Interrupt (INT8) Enable Bit

0	Disable interrupt
1	Enable interrupt

P4INTPND - Port 4 Interrupt Pending Register

F3H Set 1, Bank 0

Bit Identifier
Reset Value
Read/Write
Addressing Mode

.7	.6	.5	.4	.3	.2	.1	.0
0	0	0	0	0	0	0	0
-	-	-	-	-	R/W	R/W	R/W

Register addressing mode only
.7-. 3
. 2
.1
P4.1/PND9 Interrupt Pending Bit

0	Interrupt request is not pending, pending bit clear when write 0
1	Interrupt request is pending

.0

P4.0/PND8 Interrupt Pending Bit

0	Interrupt request is not pending, pending bit clear when write 0
1	Interrupt request is pending

Bit Identifier
Reset Value
Read/Write
Addressing Mode

.7	.6	.5	.4	.3	.2	.1	.0
0	0	0	0	0	0	0	0
R/W							
Register addressing mode only							

.7-. 4
Destination Register Page Selection Bits

0	0	0	0	Destination: page 0
0	0	0	1	Destination: page 1
Other values				

.3-. 0
Source Register Page Selection Bits

0	0	0	0	Source: page 0
0	0	0	1	Source: page 1
Other values				

NOTE: In the S3C84E5/C84E9/P84E9 microcontroller, the internal register file is configured as two pages (Pages 0-1). The pages 0-1 are used for the general-purpose register file and data register.
.2-. 0
Not used for the S3C84E5/C84E9/P84E9

Bit Identifier
Reset Value
Read/Write
Addressing Mode
.7-. 3
Register pointer 0 can independently point to one of the 256-byte working register areas in the register file. Using the register pointers RP0 and RP1, you can select two 8-byte register slices at one time as active working register space. After a reset, RP0 points to address COH in register set 1 , selecting the 8 -byte working register slice $\mathrm{COH}-\mathrm{C} 7 \mathrm{H}$.
Register addressing only

.7	.6	.5	.4	.3	.2	.1	.0
1	1	0	0	0	-	-	-
R/W	R/W	R/W	R/W	R/W	-	-	-
Register addressing only							

Register Pointer 0 Address Value

.

RP1 - Register Pointer 1
Bit Identifier
Reset Value
Read/Write

Addressing Mode
.7-. 3
Register Pointer 1 Address Value
Register pointer 1 can independently point to one of the 256 -byte working register areas in the register file. Using the register pointers RP0 and RP1, you can select two 8 -byte register slices at one time as active working register space. After a reset, RP1 points to address C 8 H in register set 1 , selecting the 8 -byte working register slice $\mathrm{C} 8 \mathrm{H}-\mathrm{CFH}$.

Not used for the S3C84E5/C84E9/P84E9

Bit Identifier
Reset Value
Read/Write
Addressing Mode

| .7 | .6 | .5 | .4 | .3 | .2 | .1 | .0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| x | x | x | x | x | x | x | x |
| R / W |
| Register addressing mode only | | | | | | | |

.7-. 0
Stack Pointer Address (High Byte)
The high-byte stack pointer value is the upper eight bits of the 16-bit stack pointer address (SP15-SP8). The lower byte of the stack pointer value is located in register SPL (D9H). The SP value is undefined following a reset.

SPL — Stack Pointer (Low Byte)
D9H
Set 1

Bit Identifier	. 7	. 6	. 5	. 4	. 3	. 2	. 1	. 0
Reset Value	x	x	x	x	x	X	x	x
Read/Write	R/W							
Addressing Mode	Register addressing mode only							
.7-. 0	Stack Pointer Address (Low Byte)							
	The low-byte stack pointer value is the lower eight bits of the 16-bit stack pointer address (SP7-SP0). The upper byte of the stack pointer value is located in register SPH (D8H). The SP value is undefined following a reset.							

STPCON - Stop Control Register

Bit Identifier
Reset Value
Read/Write
Addressing Mode

.7	.6	.5	.4	. $\mathbf{3}$	$\mathbf{. 2}$. $\mathbf{1}$. $\mathbf{0}$
0	0	0	0	0	0	0	0
R/W							
Register addressing mode only							

.7-. 0
STOP Control Bits

10100101	Enable stop instruction
Other values	Disable stop instruction

NOTE: Before execute the STOP instruction, You must set this STPCON register as "10100101b". Otherwise the STOP instruction will not be executed.

SYM - System Mode Register
DEH

Bit Identifier
Reset Value
Read/Write
Addressing Mode
Register addressing mode only
.7-. 5
.4-. 2
.1
. 0
Global Interrupt Enable Bit (note)

0	Disable global interrupt processing
1	Enable global interrupt processing

NOTE: Following a reset, you enable global interrupt processing by executing an El instruction (not by writing a "1" to
SYM.0).
Fast Interrupt Enable Bit

0	Disable fast interrupt processing
1	Enable fast interrupt processing

T1CONO - Timer 1(0) Control Register

E8H Set 1, Bank 1

Bit Identifier
Reset Value
Read/Write
Addressing Mode

| . $\mathbf{7}$ | $\mathbf{. 6}$ | $\mathbf{. 5}$ | $\mathbf{. 4}$ | $\mathbf{. 3}$ | $\mathbf{. 2}$ | . $\mathbf{1}$ | . $\mathbf{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| R/W |
| Register addressing mode only | | | | | | | |

.7-. 5
Timer 1(0) Input Clock Selection Bits

0	0	0	$\mathrm{fxx} / 1024$
0	0	1	$\mathrm{fxx} / 256$
0	1	0	$\mathrm{fxx} / 64$
0	1	1	$\mathrm{fxx} / 8$
1	0	0	fxx
1	0	1	External clock falling edge
1	1	0	External clock rising edge
1	1	1	Counter stop

Timer 1(0) Operating Mode Selection Bits

0	0	Interval mode
0	1	Capture mode (Capture on rising edge, OVF can occur)
1	0	Capture mode (Capture on falling edge, OVF can occur)
1	1	PWM mode

Timer 1(0) Counter Enable Bit

0	No effect
1	Clear the timer 1(0) counter (Auto-clear bit)

.1
Timer 1(0) Match/Capture Interrupt Enable Bit

0	Disable interrupt
1	Enable interrupt

. 0
Timer 1(0) Overflow Interrupt Enable

0	Disable overflow interrupt
1	Enable overflow interrupt

T1CON1

.7	.6	.5	.4	$\mathbf{. 3}$	$\mathbf{. 2}$	$\mathbf{. 1}$	$\mathbf{. 0}$
0	0	0	0	0	0	0	0
R/W							
Register addressing mode only							

Timer 1(1) Input Clock Selection Bits

0	0	0	$\mathrm{fxx} / 1024$
0	0	1	$\mathrm{fxx} / 256$
0	1	0	$\mathrm{fxx} / 64$
0	1	1	$\mathrm{fxx} / 8$
1	0	0	fxx
1	0	1	External clock falling edge
1	1	0	External clock rising edge
1	1	1	Counter stop

.4-. 3
. 2
Timer 1(1) Counter Enable Bit

0	No effect
1	Clear the timer 1(1) counter (Auto-clear bit)

Timer 1(1) Operating Mode Selection Bits

0	0	Interval mode
0	1	Capture mode (Capture on rising edge, OVF can occur)
1	0	Capture mode (Capture on falling edge, OVF can occur)
1	1	PWM mode

Timer 1(1) Match/Capture Interrupt Enable Bit

0	Disable interrupt
1	Enable interrupt

Timer 1(1) Overflow Interrupt Enable

0	Disable overflow interrupt
1	Enable overflow interrupt

Bit Identifier
Reset Value
Read/Write
Addressing Mode
.7-. 6
.5-. 4
. 3
Timer A Counter Clear Bit

0	No effect
1	Clear the timer A counter (Auto-clear bit)

. 2
Timer A Overflow Interrupt Enable Bit

0	Disable overflow interrupt
1	Enable overflow interrupt

Timer A Match/Capture Interrupt Enable Bit

0	Disable interrupt
1	Enable interrupt

. 0
Timer A Start/Stop Bit

0	Stop timer A
1	Start timer A

Bit Identifier
Reset Value
Read/Write
Addressing Mode

| .7 | .6 | .5 | .4 | .3 | .2 | .1 | .0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| R/W |
| Register addressing mode only | | | | | | | |

.7-. 6
Timer B Input Clock Selection Bits

0	0	$\mathrm{fxx} / 4$
0	1	$\mathrm{fxx} / 8$
1	0	$\mathrm{fxx} / 64$
1	1	$\mathrm{fxx} / 256$

.5-. 4
Timer B Interrupt Time Selection Bits

0	0	Elapsed time for low data value
0	1	Elapsed time for high data value
1	0	Elapsed time for low and high data values
1	1	Not Used

. 3
Timer B Interrupt Enable Bit

0	Disable interrupt
1	Enable interrupt

. 2
Timer B Start/Stop Bit

0	Stop timer B
1	Start timer B

.1
Timer B Mode Selection Bit

0	One-shot mode
1	Repeating mode

. 0
Timer B Output flip-flop Control Bit

0	T-FF is low
1	T-FF is high

NOTE: fxx is selected clock for system.

TINTPND - Timer A, Timer 1 Interrupt Pending Register EOH Set 1, Bank 1

Bit Identifier
Reset Value
Read/Write
Addressing Mode

.7	.6	.5	.4	.3	. $\mathbf{2}$. $\mathbf{1}$.0
0	0	0	0	0	0	0	0
-	-	R/W	R/W	R/W	R/W	R/W	R/W

Register addressing mode only
.7-. 6
Not used for the S3C84E5/C84E9/P84E9 (must keep always 0)
. 5
Timer 1(1) Overflow Interrupt Pending Bit

0	No interrupt pending
0	Clear pending bit when write
1	Interrupt pending

. 4
Timer 1(1) Match/Capture Interrupt Pending Bit

0	No interrupt pending
0	Clear pending bit when write
1	Interrupt pending

. 3
Timer 1(0) Overflow Interrupt Pending Bit

0	No interrupt pending
0	Clear pending bit when write
1	Interrupt pending

Timer 1(0) Match/Capture Interrupt Pending Bit

0	No interrupt pending
0	Clear pending bit when write
1	Interrupt pending

Timer A Overflow Interrupt Pending Bit

0	No interrupt pending
0	Clear pending bit when write
1	Interrupt pending

. 0
Timer A Match/Capture Interrupt Pending Bit

0	No interrupt pending
0	Clear pending bit when write
1	Interrupt pending

F6H
Set 1, Bank 0

Bit Identifier
Reset Value

Read/Write
.7-. 6

.7	.6	.5	.4	.3	.2	. $\mathbf{1}$.0
0	0	0	0	0	0	0	0
R / W							

Operating Mode and Baud Rate Selection Bits

0	0	Mode 0: Shift Register $[\mathrm{fxx} /(16 \times(16$-bit BRDATA +1$))]$
0	1	Mode 1: 8-bit UART $[\mathrm{fxx} /(16 \times(16$-bit BRDATA +1$))]$
1	X	Mode 2: 9-bit UART $[\mathrm{fxx} /(16 \times(16$-bit BRDATA +1$))]$

.5
Multiprocessor Communication (1) Enable Bit (for mode 2 only)

0	Disable
1	Enable

Serial Data Receive Enable Bit

0	Disable
1	Enable

. 3
If Parity disable mode ($\mathrm{PEN}=0$),
location of the 9th data bit to be transmitted in UART mode 2 ("0" or "1").
If Parity enable mode ($\mathrm{PEN}=1$),
even/odd parity selection bit for transmit data in UART mode 2.
0: Even parity bit generation for transmit data
1: Odd parity bit generation for transmit data

If Parity disable ($\mathrm{PEN}=0$),
location of the 9th data bit that was received in UART mode 2 ("0" or "1").
If Parity enable mode (PEN = 1),
even/odd parity selection bit for receive data in UART mode 2.
0 : Even parity check for the received data
1: Odd parity check for the received data
A result of parity error will be saved in RPE bit of the UARTPND register after parity checking of the received data.

Receive Interrupt Enable Bit

0	Disable receive interrupt
1	Enable receive interrupt

Transmit Interrupt Enable Bit

0	Disable transmit interrupt
1	Enable transmit Interrupt

NOTES:

1. In mode 2, if the MCE (UARTCON.5) bit is set to " 1 ", then the receive interrupt will not be activated if the received 9 th data bit is " 0 ". In mode 1 , if MCE $=" 1$ ", then the receive interrupt will not be activated if a valid stop bit was not received. In mode 0 , the MCE (UARTCON.5) bit should be " 0 ".
2. The descriptions for 8 -bit and 9 -bit UART mode do not include start and stop bits for serial data receive and transmit.
3. Parity enable bits, PEN, are located in the UARTPND register at address F4H, bank 0.
4. Parity enable and parity error check can be available in 9-bit UART mode (Mode 2) only.

UARTPND - UART Pending and parity control

F4H Set 1, Bank 0

Bit Identifier	.7	.6	.5	.4	.3	.2	.1	.0
Reset Value	0	0	0	0	0	0	0	0
Read/Write	-	-	R/W	R/W	-	-	R/W	R/W

.7-. 6
.5
Not used for the S3C84E5/C84E9/P84E9 (must keep always 0)

UART Parity Enable/Disable (PEN)

0	Disable
1	Enable

.4
UART Receive Parity Error (RPE)

0	No error
1	Parity error

.3-. 2
Not used for the S3C84E5/C84E9/P84E9 (must keep always 0)

UART Receive Interrupt Pending Flag

0	Not pending
0	Clear pending bit (when write)
1	Interrupt pending

.0
UART Transmit Interrupt Pending Flag

0	Not pending
0	Clear pending bit (when write)
1	Interrupt pending

NOTES:

1. In order to clear a data transmit or receive interrupt pending flag, you must write a " 0 " to the appropriate pending bit.
2. To avoid programming errors, we recommend using load instruction (except for LDB), when manipulating UARTPND values.
3. Parity enable and parity error check can be available in 9-bit UART mode (Mode 2) only.
4. Parity error bit (RPE) will be refreshed whenever 8th receive data bit has been shifted.

WTCON - Watch Timer Control Register
FAH Set 1, Bank 0

Bit Identifier
Reset Value
Read/Write
Addressing Mode

.7	.6	.5	.4	. $\mathbf{3}$	$\mathbf{. 2}$. $\mathbf{1}$.0
0	0	0	0	0	0	0	0
R/W							
Register addressing mode only							

. 7
Watch Timer Clock Selection Bit

0	Main system clock divided by 256 (fxx/256)
1	Sub system clock (fxt)

. 6
Watch Timer Interrupt Enable Bit

0	Disable watch timer interrupt
1	Enable watch timer interrupt

.5-. 4
.3-. 2
.1
. 0

Buzzer Signal Selection Bits

0	0	0.5 kHz buzzer (BZOUT) signal output
0	1	1 kHz buzzer (BZOUT) signal output
1	0	2 kHz buzzer (BZOUT) signal output
1	1	4 kHz buzzer (BZOUT) signal output

Watch Timer Speed Selection Bits

0	0	0.5 s Interval
0	1	0.25 s Interval
1	0	0.125 s interval
1	1	1.955 ms Interval

Watch Timer Enable Bit

0	Disable watch timer; Clear frequency dividing circuits
1	Enable watch timer

Watch Timer Interrupt Pending Bit

0	Interrupt is not pending
1	Clear pending bit when write
1	Interrupt is pending

INTERRUPT STRUCTURE

OVERVIEW

The S3C8-series interrupt structure has three basic components: levels, vectors, and sources. The SAM8 CPU recognizes up to eight interrupt levels and supports up to 128 interrupt vectors. When a specific interrupt level has more than one vector address, the vector priorities are established in hardware. A vector address can be assigned to one or more sources.

Levels

Interrupt levels are the main unit for interrupt priority assignment and recognition. All peripherals and I/O blocks can issue interrupt requests. In other words, peripheral and I/O operations are interrupt-driven. There are eight possible interrupt levels: IRQ0-IRQ7, also called level 0-level 7. Each interrupt level directly corresponds to an interrupt request number (IRQn). The total number of interrupt levels used in the interrupt structure varies from device to device. The S3C84E5/C84E9/P84E9 interrupt structure recognizes eight interrupt levels.

The interrupt level numbers 0 through 7 do not necessarily indicate the relative priority of the levels. They are just identifiers for the interrupt levels that are recognized by the CPU. The relative priority of different interrupt levels is determined by settings in the interrupt priority register, IPR. Interrupt group and subgroup logic controlled by IPR settings lets you define more complex priority relationships between different levels.

Vectors

Each interrupt level can have one or more interrupt vectors, or it may have no vector address assigned at all. The maximum number of vectors that can be supported for a given level is 128 (The actual number of vectors used for S3C8-series devices is always much smaller). If an interrupt level has more than one vector address, the vector priorities are set in hardware. S3C84E5/C84E9/P84E9 uses twenty-one vectors.

Sources

A source is any peripheral that generates an interrupt. A source can be an external pin or a counter overflow. Each vector can have several interrupt sources. In the S3C84E5/C84E9/P84E9 interrupt structure, there are twenty-one possible interrupt sources.

When a service routine starts, the respective pending bit should be either cleared automatically by hardware or cleared "manually" by program software. The characteristics of the source's pending mechanism determine which method would be used to clear its respective pending bit.

SMMSUNG

INTERRUPT TYPES

The three components of the S3C8 interrupt structure described before - levels, vectors, and sources - are combined to determine the interrupt structure of an individual device and to make full use of its available interrupt logic. There are three possible combinations of interrupt structure components, called interrupt types 1, 2, and 3. The types differ in the number of vectors and interrupt sources assigned to each level (see Figure 5-1):

Type 1: One level (IRQn) + one vector (V1) + one source (S1)
Type 2: \quad One level (IRQn) + one vector (V1) + multiple sources (S1 - Sn)
Type 3: \quad One level (IRQn) + multiple vectors $(\mathrm{V} 1-\mathrm{Vn})+$ multiple sources $(\mathrm{S} 1-\mathrm{Sn}, \mathrm{Sn}+1-\mathrm{Sn}+\mathrm{m})$

In the S3C84E5/C84E9/P84E9 microcontroller, two interrupt types are implemented.

Figure 5-1. S3C8-Series Interrupt Types

S3C84E5/C84E9/P84E9 INTERRUPT STRUCTURE

The S3C84E5/C84E9/P84E9 microcontroller supports twenty-one interrupt sources. All of the interrupt sources have a corresponding interrupt vector address. Eight interrupt levels are recognized by the CPU in this device-specific interrupt structure, as shown in Figure 5-2.

When multiple interrupt levels are active, the interrupt priority register (IPR) determines the order in which contending interrupts are to be serviced. If multiple interrupts occur within the same interrupt level, the interrupt with the lowest vector address is usually processed first (The relative priorities of multiple interrupts within a single level are fixed in hardware).

When the CPU grants an interrupt request, interrupt processing starts. All other interrupts are disabled and the program counter value and status flags are pushed to stack. The starting address of the service routine is fetched from the appropriate vector address (plus the next 8 -bit value to concatenate the full 16 -bit address) and the service routine is executed.

Levels	Vectors	Sources	Reset(Clear)
IRQ0	BEH	Timer B underflow	H/W
IRQ1	COH	Timer A match/capture	H/W, S/W
	C 2 H	Timer A overflow	H/W, S/W
IRQ2	C 4 H	Timer 1(0) match/capture	H/W, S/W
	C6H	Timer 1(0) overflow	H/W, S/W
	C8H	Timer 1(1) match/capture	H/W, S/W
	CAH	Timer 1(1) overflow	H/W, S/W
IRQ3	CCH	Watch timer	S/W
	CEH	P2.0 external interrupt	S/W
IRQ4	DOH	P2.1 external interrupt	S/W
	D2H	P2.2 external interrupt	S/W
	H	P2.3 external interrupt	S/W
IRQ5	D6H	P2.4 external interrupt	S/W
	8 H	P2.5 external interrupt	S/W
	DAH	P2.6 external interrupt	S/W
	DCH	P2.7 external interrupt	S/W
IRQ6	H	P4.0 external interrupt	S/W
	EOH	P4.1 external interrupt	S/W
	E2H	P4.2 external interrupt	S/W
IRQ7	E4H	UART data receive	S/W
	E6	UART data transmit	S/W

NOTES:

1. Within a given interrupt level, the lower vector address has high priority. For example, DCH has higher priority than DEH within the level IRQ5 the priorities within each level are set at the factory.
2. External interrupts are triggered by a rising or falling edge, depending on the corresponding control register setting.

Figure 5-2. S3C84E5/C84E9/P84E9 Interrupt Structure

INTERRUPT VECTOR ADDRESSES

All interrupt vector addresses for the S3C84E5/C84E9/P84E9 interrupt structure are stored in the vector address area of the internal 16/32-Kbyte ROM, $0 \mathrm{H}-3 \mathrm{FFFH} / 0 \mathrm{H}-7 \mathrm{FFFH}$ (see Figure 5-3).

You can allocate unused locations in the vector address area as normal program memory. If you do so, please be careful not to overwrite any of the stored vector addresses (Table 5-1 lists all vector addresses).

The program reset address in the ROM is 0100 H .

Figure 5-3. ROM Vector Address Area

Table 5-1. Interrupt Vectors

Vector Address		Interrupt Source	Request		Reset/Clear	
Decimal Value	Hex Value		Interrupt Level	Priority in Level	H/W	S/W
256	100H	Basic timer (WDT) overflow	nRESET	-	\checkmark	
230	E6H	UART transmit	IRQ7	1		\checkmark
228	E4H	UART receive		0		\checkmark
226	E2H	P4.2 external interrupt	IRQ6	2		\checkmark
224	EOH	P4.1 external interrupt		1		\checkmark
222	DEH	P4.0 external interrupt		0		\checkmark
220	DCH	P2.7 external interrupt	IRQ5	3		\checkmark
218	DAH	P2.6external interrupt		2		\checkmark
216	D8H	P2.5 external interrupt		1		\checkmark
214	D6H	P2.4 external interrupt		0		\checkmark
212	D4H	P2.3 external interrupt	IRQ4	3		\checkmark
210	D2H	P2.2 external interrupt		2		\checkmark
208	DOH	P2.1external interrupt		1		\checkmark
206	CEH	P2.0 external interrupt		0		\checkmark
204	CCH	Watch timer	IRQ3	-		\checkmark
202	CAH	Timer 1(1) overflow	IRQ2	3	\checkmark	\checkmark
200	C8H	Timer 1(1) match/capture		2	\checkmark	\checkmark
198	C6H	Timer 1(0) overflow		1	\checkmark	\checkmark
196	C 4 H	Timer 1(0) match/capture		0	$\sqrt{ }$	\checkmark
194	C 2 H	Timer A overflow	IRQ1	1	\checkmark	\checkmark
192	COH	Timer A match/capture		0	$\sqrt{ }$	\checkmark
190	BEH	Timer B underflow	IRQ0	-	\checkmark	

NOTES:

1. Interrupt priorities are identified in inverse order: " 0 " is the highest priority, " 1 " is the next highest, and so on.
2. If two or more interrupts within the same level contend, the interrupt with the lowest vector address usually has priority over one with a higher vector address. The priorities within a given level are fixed in hardware.

ENABLE/DISABLE INTERRUPT INSTRUCTIONS (EI, DI)

Executing the Enable Interrupts (EI) instruction globally enables the interrupt structure. All interrupts are then serviced as they occur according to the established priorities.

NOTE

The system initialization routine executed after a reset must always contain an El instruction to globally enable the interrupt structure.

During the normal operation, you can execute the DI (Disable Interrupt) instruction at any time to globally disable interrupt processing. The El and DI instructions change the value of bit 0 in the SYM register.

SYSTEM-LEVEL INTERRUPT CONTROL REGISTERS

In addition to the control registers for specific interrupt sources, four system-level registers control interrupt processing:

- The interrupt mask register, IMR, enables (un-masks) or disables (masks) interrupt levels.
- The interrupt priority register, IPR, controls the relative priorities of interrupt levels.
- The interrupt request register, IRQ, contains interrupt pending flags for each interrupt level (as opposed to each interrupt source).
- The system mode register, SYM, enables or disables global interrupt processing (SYM settings also enable fast interrupts and control the activity of external interface, if implemented).

Table 5-2. Interrupt Control Register Overview

Control Register	ID	R/W	Function Description
Interrupt mask register	IMR	R/W	Bit settings in the IMR register enable or disable interrupt processing for each of the eight interrupt levels: IRQ0-IRQ7.
Interrupt priority register	IPR	R/W	Controls the relative processing priorities of the interrupt levels. The seven levels of S3C84E5/C84E9/P84E9 are organized into three groups: A, B, and C. Group A is IRQ0 and IRQ1, group B is IRQ2, IRQ3 and IRQ4, and group C is IRQ5, IRQ6, and IRQ7.
Interrupt request register	IRQ	R	This register contains a request pending bit for each interrupt level.
System mode register	SYM	R/W	This register enables/disables fast interrupt processing, dynamic global interrupt processing.

NOTE: Before IMR register is changed to any value, all interrupts must be disable.
Using DI instruction is recommended.

INTERRUPT PROCESSING CONTROL POINTS

Interrupt processing can therefore be controlled in two ways: globally or by specific interrupt level and source. The system-level control points in the interrupt structure are:

- Global interrupt enable and disable (by El and DI instructions or by direct manipulation of SYM.0)
- Interrupt level enable/disable settings (IMR register)
- Interrupt level priority settings (IPR register)
- Interrupt source enable/disable settings in the corresponding peripheral control registers

NOTE

When writing an application program that handles interrupt processing, be sure to include the necessary register file address (register pointer) information.

Figure 5-4. Interrupt Function Diagram

PERIPHERAL INTERRUPT CONTROL REGISTERS

For each interrupt source there is one or more corresponding peripheral control registers that let you control the interrupt generated by the related peripheral (see Table 5-3).

Table 5-3. Interrupt Source Control and Data Registers

Interrupt Source	Interrupt Level	Register(s)	Location(s) in set1
Timer B underflow	IRQ0	TBCON	DOH
		TBDATAH, TBDATAL	D1H, D2H,
Timer A overflow	IRQ1	TINTPND	E0H, bank 1
Timer A match/capture		TACON	E1H, bank 1
		TADATA	E2H, bank 1
		TACNT	E3H, bank 1
Timer 1(0) match/capture	IRQ2	T1DATAH0,T1DATAL0	E4H, E5H, bank 1
Timer 1(0) overflow		T1DATAH1,T1DATAL1	E6H, E7H, bank 1
Timer 1(1) match/capture		T1CON0, T1CON1	E8H, E9H, bank 1
Timer 1(1) overflow		T1CNTH0, T1CNTL0	EAH, EBH, bank 1
		T1CNTH1, T1CNTL1	ECH, EDH, bank 1
		TINTPND	EOH, bank 1
Watch timer	IRQ3	WTCON	FAH, bank 0
P2.0 external interrupt	IRQ4	P2CONL	EBH, bank 0
P2.1 external interrupt		P2INT	ECH, bank 0
P2.2 external interrupt		P2INTPND	EDH, bank 0
P2.3 external interrupt			
P2.4 external interrupt	IRQ5	P2CONH	EAH, bank 0
P2.5 external interrupt		P2INT	ECH, bank 0
P2.6 external interrupt		P2INTPND	EDH, bank 0
P2.7 external interrupt			
P4.0 external interrupt	IRQ6	P4CONL	F1H, bank 0
P4.1 external interrupt		P4INT	F2H, bank 0
P4.2 external interrupt		P4INTPND	F3H, bank 0
UART receive/transmit	IRQ7	UARTCON	F6H, bank 0
		UDATA, UARTPND	F5H, F4H, bank 0
		BRDATAH, BRDATAL	EEH, EFH, bank 1

SYSTEM MODE REGISTER (SYM)

The system mode register, SYM (set 1, DEH), is used to globally enable and disable interrupt processing (see Figure 5-5).

A reset clears SYM. 0 to "0".
The instructions El and DI enable and disable global interrupt processing, respectively, by modifying the bit 0 value of the SYM register. In order to enable interrupt processing an Enable Interrupt (EI) instruction must be included in the initialization routine, which follows a reset operation. Although you can manipulate SYM. 0 directly to enable and disable interrupts during the normal operation, it is recommended to use the El and DI instructions for this purpose.

Figure 5-5. System Mode Register (SYM)

INTERRUPT MASK REGISTER (IMR)

The interrupt mask register, IMR (set 1, DDH) is used to enable or disable interrupt processing for individual interrupt levels. After a reset, all IMR bit values are undetermined and must therefore be written to their required settings by the initialization routine.

Each IMR bit corresponds to a specific interrupt level: bit 1 to IRQ1, bit 2 to IRQ2, and so on. When the IMR bit of an interrupt level is cleared to " 0 ", interrupt processing for that level is disabled (masked). When you set a level's IMR bit to "1", interrupt processing for the level is enabled (not masked).

The IMR register is mapped to register location DDH in set 1 . Bit values can be read and written by instructions using the Register addressing mode.

Figure 5-6. Interrupt Mask Register (IMR)

INTERRUPT PRIORITY REGISTER (IPR)

The interrupt priority register, IPR (set 1, bank 0, FFH), is used to set the relative priorities of the interrupt levels in the microcontroller's interrupt structure. After a reset, all IPR bit values are undetermined and must therefore be written to their required settings by the initialization routine.

When more than one interrupt sources are active, the source with the highest priority level is serviced first. If two sources belong to the same interrupt level, the source with the lower vector address usually has the priority (This priority is fixed in hardware).

To support programming of the relative interrupt level priorities, they are organized into groups and subgroups by the interrupt logic. Please note that these groups (and subgroups) are used only by IPR logic for the IPR register priority definitions (see Figure 5-7):

```
Group A IRQ0, IRQ1
Group B IRQ2, IRQ3, IRQ4
Group C IRQ5, IRQ6, IRQ7
```


Figure 5-7. Interrupt Request Priority Groups

As you can see in Figure 5-8, IPR.7, IPR.4, and IPR. 1 control the relative priority of interrupt groups A, B, and C. For example, the setting "001B" for these bits would select the group relationship $B>C>A$. The setting "101B" would select the relationship $C>B>A$.

The functions of the other IPR bit settings are as follows:

- IPR. 5 controls the relative priorities of group C interrupts.
- Interrupt group C includes a subgroup that has an additional priority relationship among the interrupt levels 5, 6, and 7. IPR. 6 defines the subgroup C relationship. IPR. 5 controls the interrupt group C.
- IPR. 0 controls the relative priority setting of IRQ0 and IRQ1 interrupts.

Figure 5-8. Interrupt Priority Register (IPR)

INTERRUPT REQUEST REGISTER (IRQ)

You can poll bit values in the interrupt request register, IRQ (set 1, DCH), to monitor interrupt request status for all levels in the microcontroller's interrupt structure. Each bit corresponds to the interrupt level of the same number: bit 0 to IRQ0, bit 1 to IRQ1, and so on. A "0" indicates that no interrupt request is currently being issued for that level. A " 1 " indicates that an interrupt request has been generated for that level.

IRQ bit values are read-only addressable using Register addressing mode. You can read (test) the contents of the IRQ register at any time using bit or byte addressing to determine the current interrupt request status of specific interrupt levels. After a reset, all IRQ status bits are cleared to "0".

You can poll IRQ register values even if a DI instruction has been executed (that is, if global interrupt processing is disabled). If an interrupt occurs while the interrupt structure is disabled, the CPU will not service it. You can, however, still detect the interrupt request by polling the IRQ register. In this way, you can determine which events occurred while the interrupt structure was globally disabled.

Figure 5-9. Interrupt Request Register (IRQ)

INTERRUPT PENDING FUNCTION TYPES

Overview

There are two types of interrupt pending bits: one type that is automatically cleared by hardware after the interrupt service routine is acknowledged and executed; the other that must be cleared in the interrupt service routine.

Pending Bits Cleared Automatically by Hardware

For interrupt pending bits that are cleared automatically by hardware, interrupt logic sets the corresponding pending bit to "1" when a request occurs. It then issues an IRQ pulse to inform the CPU that an interrupt is waiting to be serviced. The CPU acknowledges the interrupt source by sending an IACK, executes the service routine, and clears the pending bit to " 0 ". This type of pending bit is not mapped and cannot, therefore, be read or written by application software.

In the S3C84E5/C84E9/P84E9 interrupt structure, the timer B underflow interrupt (IRQ0) belongs to this category of interrupts in which pending condition is cleared automatically by hardware.

Pending Bits Cleared by the Service Routine

The second type of pending bit is the one that should be cleared by program software. The service routine must clear the appropriate pending bit before a return-from-interrupt subroutine (IRET) occurs. To do this, a " 0 " must be written to the corresponding pending bit location in the source's mode or control register.

In the S3C84E5/C84E9/P84E9 interrupt structure, pending conditions for IRQ3, IRQ4, IRQ5, IRQ6, and IRQ7 must be cleared in the interrupt service routine.

INTERRUPT SOURCE POLLING SEQUENCE

The interrupt request polling and servicing sequence is as follows:

1. A source generates an interrupt request by setting the interrupt request bit to "1".
2. The CPU polling procedure identifies a pending condition for that source.
3. The CPU checks the interrupt level of source.
4. The CPU generates an interrupt acknowledge signal.
5. Interrupt logic determines the interrupt's vector address.
6. The service routine starts and the source's pending bit is cleared to "0" (by hardware or by software).
7. The CPU continues polling for interrupt requests.

INTERRUPT SERVICE ROUTINES

Before an interrupt request is serviced, the following conditions must be met:
— Interrupt processing must be globally enabled (EI, SYM. $0=$ "1")

- The interrupt level must be enabled (IMR register)
- The interrupt level must have the highest priority if more than one level is currently requesting service
- The interrupt must be enabled at the interrupt's source (peripheral control register)

When all the above conditions are met, the interrupt request is acknowledged at the end of the instruction cycle. The CPU then initiates an interrupt machine cycle that completes the following processing sequence:

1. Reset (clear to " 0 ") the interrupt enable bit in the SYM register (SYM.0) to disable all subsequent interrupts.
2. Save the program counter (PC) and status flags to the system stack.
3. Branch to the interrupt vector to fetch the address of the service routine.
4. Pass control to the interrupt service routine.

When the interrupt service routine is completed, the CPU issues an Interrupt Return (IRET). The IRET restores the PC and status flags, setting SYM. 0 to "1". It allows the CPU to process the next interrupt request.

GENERATING INTERRUPT VECTOR ADDRESSES

The interrupt vector area in the ROM ($00 \mathrm{H}-\mathrm{FFH}$) contains the addresses of interrupt service routines that correspond to each level in the interrupt structure. Vectored interrupt processing follows this sequence:

1. Push the program counter's low-byte value to the stack.
2. Push the program counter's high-byte value to the stack.
3. Push the FLAG register values to the stack.
4. Fetch the service routine's high-byte address from the vector location.
5. Fetch the service routine's low-byte address from the vector location.
6. Branch to the service routine specified by the concatenated 16 -bit vector address.

NOTE

A 16-bit vector address always begins at an even-numbered ROM address within the range of $00 \mathrm{H}-\mathrm{FFH}$.

NESTING OF VECTORED INTERRUPTS

It is possible to nest a higher-priority interrupt request while a lower-priority request is being serviced. To do this, you must follow these steps:

1. Push the current 8 -bit interrupt mask register (IMR) value to the stack (PUSH IMR).
2. Load the IMR register with a new mask value that enables only the higher priority interrupt.
3. Execute an El instruction to enable interrupt processing (a higher priority interrupt will be processed if it occurs).
4. When the lower-priority interrupt service routine ends, restore the IMR to its original value by returning the previous mask value from the stack (POP IMR).
5. Execute an IRET.

Depending on the application, you may be able to simplify the procedure above to some extent.

INSTRUCTION SET

OVERVIEW

The instruction set is specifically designed to support large register files that are typical of most S3C8-series microcontrollers. There are 78 instructions. The powerful data manipulation capabilities and features of the instruction set include:

- A full complement of 8-bit arithmetic and logic operations, including multiply and divide
- No special I/O instructions (I/O control/data registers are mapped directly into the register file)
- Decimal adjustment included in binary-coded decimal (BCD) operations
- 16-bit (word) data can be incremented and decremented
- Flexible instructions for bit addressing, rotate, and shift operations

DATA TYPES

The CPU performs operations on bits, bytes, BCD digits, and two-byte words. Bits in the register file can be set, cleared, complemented, and tested. Bits within a byte are numbered from 7 to 0 , where bit 0 is the least significant (right-most) bit.

REGISTER ADDRESSING

To access an individual register, an 8-bit address in the range $0-255$ or the 4-bit address of a working register is specified. Paired registers can be used to construct 16-bit data, 16-bit program memory or data memory addresses. For detailed information about register addressing, please refer to Chapter 2, "Address Spaces."

ADDRESSING MODES

There are seven explicit addressing modes: Register (R), Indirect Register (IR), Indexed (X), Direct (DA), Relative (RA), Immediate (IM), and Indirect (IA). For detailed descriptions of these addressing modes, please refer to Chapter 3, "Addressing Modes."

SAMSUNG

Table 6-1. Instruction Group Summary

Mnemonic	Operands	Instruction
Load Instructions		
CLR	dst	Clear
LD	dst,src	Load
LDB	dst,src	Load bit
LDE	dst,src	Load external data memory
LDC	dst,src	Load program memory
LDED	dst,src	Load external data memory and decrement
LDCD	dst,src	Load program memory and decrement
LDEI	dst,src	Load external data memory and increment
LDCI	dst,src	Load program memory and increment
LDEPD	dst,src	Load external data memory with pre-decrement
LDCPD	dst,src	Load program memory with pre-decrement
LDEPI	dst,src	Load external data memory with pre-increment
LDCPI	dst,src	Load program memory with pre-increment
LDW	dst,src	Load word
POP	dst	Pop from stack
POPUD	dst,src	Pop user stack (decrementing)
POPUI	dst,src	Pop user stack (incrementing)
PUSH	src	Push to stack
PUSHUD	dst,src	Push user stack (decrementing)
PUSHUI	dst,src	Push user stack (incrementing)

NOTE: LDE, LDED, LDEI, LDEPP, and LDEPI instructions can be used to read/write the data from the 64-Kbyte data memory.

Table 6-1. Instruction Group Summary (Continued)

Mnemonic	Operands	Instruction

Arithmetic Instructions

ADC	dst,src	Add with carry
ADD	dst,src	Add
CP	dst,src	Compare
DA	$d s t$	Decimal adjust
DEC	$d s t$	Decrement
DECW	$d s t$	Decrement word
DIV	$d s t, s r c$	Divide
INC	$d s t$	Increment
INCW	$d s t$	Increment word
MULT	$d s t, s r c$	Multiply
SBC	$d s t, s r c$	Subtract with carry
SUB	$d s t, s r c$	Subtract

Logic Instructions

AND	$d s t, s r c$	Logical AND
COM	$d s t$	Complement
OR	$d s t, s r c$	Logical OR
XOR	$d s t, s r c$	Logical exclusive OR

Table 6-1. Instruction Group Summary (Continued)

Mnemonic	Operands	Instruction

Program Control Instructions

BTJRF	dst,src	Bit test and jump relative on false
BTJRT	dst,src	Bit test and jump relative on true
CALL	dst	Call procedure
CPIJE	dst,src	Compare, increment and jump on equal
CPIJNE	dst,src	Compare, increment and jump on non-equal
DJNZ	r,dst	Decrement register and jump on non-zero
ENTER		Enter
EXIT		Exit
IRET		Interrupt return
JP	dst,dst	Jump on condition code
JP	cc,dst	Jump unconditional
JR		Jump relative on condition code
NEXT		Next
RET		Return
WFI		Wait for interrupt

Bit Manipulation Instructions

BAND	$d s t, s r c$	Bit AND
BCP	$d s t$, src	Bit compare
BITC	$d s t$	Bit complement
BITR	$d s t$	Bit reset
BITS	$d s t$	Bit set
BOR	$d s t, s r c$	Bit OR
BXOR	$d s t, s r c$	Bit XOR
TCM	$d s t, s r c$	Test complement under mask
TM	$d s t, s r c$	Test under mask

Table 6-1. Instruction Group Summary (Concluded)

Mnemonic	Operands	Instruction

Rotate and Shift Instructions

RL	dst	Rotate left
RLC	$d s t$	Rotate left through carry
RR	$d s t$	Rotate right
RRC	$d s t$	Rotate right through carry
SRA	$d s t$	Shift right arithmetic
SWAP	$d s t$	Swap nibbles

CPU Control Instructions

CCF	Complement carry flag
DI	Disable interrupts
EI	Enable interrupts
IDLE	Enter Idle mode
NOP	No operation
RCF	Reset carry flag
SB0	Set bank 0
SB1	
SCF	Set bank 1
SRP	Src
SRP0	src
SRP1	src
STOP	

FLAGS REGISTER (FLAGS)

The flags register FLAGS contains eight bits which describe the current status of CPU operations. Four of these bits, FLAGS.7-FLAGS.4, can be tested and used with conditional jump instructions. Two other flag bits, FLAGS. 3 and FLAGS.2, are used for BCD arithmetic.

The FLAGS register also contains a bit to indicate the status of fast interrupt processing (FLAGS.1) and a bank address status bit (FLAGS.0) to indicate whether register bank 0 or bank 1 is currently being addressed.

FLAGS register can be set or reset by instructions as long as its outcome does not affect the flags, such as, Load instruction. Logical and Arithmetic instructions such as, AND, OR, XOR, ADD, and SUB can affect the Flags register. For example, the AND instruction updates the Zero, Sign and Overflow flags based on the outcome of the AND instruction. If the AND instruction uses the Flags register as the destination, then two write will simultaneously occur to the Flags register producing an unpredictable result.

Figure 6-1. System Flags Register (FLAGS)

FLAG DESCRIPTIONS

C Carry Flag (FLAGS.7)

The C flag is set to "1" if the result from an arithmetic operation generates a carry-out from or a borrow to the bit 7 position (MSB). After rotate and shift operations have been performed, it contains the last value shifted out of the specified register. Program instructions can set, clear, or complement the carry flag.

Z \quad Zero Flag (FLAGS.6)

For arithmetic and logic operations, the Z flag is set to "1" if the result of the operation is zero. In operations that test register bits, and in shift and rotate operations, the Z flag is set to " 1 " if the result is logic zero.

S Sign Flag (FLAGS.5)

Following arithmetic, logic, rotate, or shift operations, the sign bit identifies the state of the MSB of the result. A logic zero indicates a positive number and a logic one indicates a negative number.

v

Overflow Flag (FLAGS.4)
The V flag is set to " 1 " when the result of a two's-complement operation is greater than +127 or less than 128. It is cleared to " 0 " after a logic operation has been performed.

D Decimal Adjust Flag (FLAGS.3)

The DA bit is used to specify what type of instruction was executed last during BCD operations so that a subsequent decimal adjust operation can execute correctly. The DA bit is not usually accessed by programmers, and it cannot be addressed as a test condition.

H Half-Carry Flag (FLAGS.2)

The H bit is set to "1" whenever an addition generates a carry-out of bit 3, or when a subtraction borrows out of bit 4. It is used by the Decimal Adjust (DA) instruction to convert the binary result of a previous addition or subtraction into the correct decimal (BCD) result. The H flag is normally not accessed directly by a program.

FIS Fast Interrupt Status Flag (FLAGS.1)

The FIS bit is set during a fast interrupt cycle and reset during the IRET following interrupt servicing. When set, it inhibits all interrupts and causes the fast interrupt return to be executed when the IRET instruction is executed.

BA Bank Address Flag (FLAGs.0)

The BA flag indicates which register bank in the set 1 area of the internal register file is currently selected, bank 0 or bank 1 . The BA flag is cleared to " 0 " (select bank 0) when the SB0 instruction is executed and is set to "1" (select bank 1) when the SB1 instruction is executed.

SMMSUNE

INSTRUCTION SET NOTATION

Table 6-2. Flag Notation Conventions

Flag	
C	Carry flag
Z	Zero flag
S	Sign flag
V	Overflow flag
D	Decimal-adjust flag
H	Half-carry flag
0	Cleared to logic zero
1	Set to logic one
*	Set or cleared according to operation
-	Value is unaffected
x	Value is undefined

Table 6-3. Instruction Set Symbols

Symbol	Description
dst	Destination operand
src	Source operand
@	Indirect register address prefix
PC	Program counter
IP	Instruction pointer
FLAGS	Flags register (D5H)
RP	Register pointer
\#	Immediate operand or register address prefix
H	Hexadecimal number suffix
D	Decimal number suffix
B	Binary number suffix
opc	Opcode

Table 6-4. Instruction Notation Conventions

Notation	Description	Actual Operand Range
CC	Condition code	See list of condition codes in Table 6-6.
r	Working register only	Rn ($\mathrm{n}=0-15$)
rb	Bit (b) of working register	Rn.b ($\mathrm{n}=0-15, \mathrm{~b}=0-7$)
r0	Bit 0 (LSB) of working register	$\operatorname{Rn}(\mathrm{n}=0-15)$
rr	Working register pair	$\operatorname{RRp}(p=0,2,4, \ldots, 14)$
R	Register or working register	reg or Rn (reg = 0-255, $\mathrm{n}=0-15$)
Rb	Bit "b" of register or working register	reg.b (reg $=0-255, \mathrm{~b}=0-7$)
RR	Register pair or working register pair	reg or RRp (reg $=0-254$, even number only, where $p=0,2, \ldots, 14$)
IA	Indirect addressing mode	addr (addr = 0-254, even number only)
Ir	Indirect working register only	@Rn ($\mathrm{n}=0-15$)
IR	Indirect register or indirect working register	@Rn or @reg (reg = 0-255, $\mathrm{n}=0-15$)
Irr	Indirect working register pair only	@RRp ($\mathrm{p}=0,2, \ldots, 14$)
IRR	Indirect register pair or indirect working register pair	$@ R R p$ or @reg (reg = 0-254, even only, where $p=0,2, \ldots, 14$)
X	Indexed addressing mode	\#reg[Rn] (reg = 0-255, $\mathrm{n}=0-15$)
XS	Indexed (short offset) addressing mode	\#addr[RRp] (addr = range -128 to +127 , where $\mathrm{p}=0,2, \ldots, 14$)
XL	Indexed (long offset) addressing mode	\#addr [RRp] (addr = range 0-65535, where $p=2, \ldots, 14)$
DA	Direct addressing mode	addr (addr = range 0-65535)
RA	Relative addressing mode	addr (addr $=$ a number from +127 to -128 that is an offset relative to the address of the next instruction)
IM	Immediate addressing mode	\#data (data = 0-255)
IML	Immediate (long) addressing mode	\#data (data $=0-65535$)

Table 6-5. OPCODE Quick Reference

OPCODE MAP									
LOWER NIBBLE (HEX)									
	-	0	1	2	3	4	5	6	7
U	0	$\begin{gathered} \text { DEC } \\ \text { R1 } \end{gathered}$	$\begin{aligned} & \text { DEC } \\ & \text { IR1 } \end{aligned}$	$\begin{aligned} & \text { ADD } \\ & \text { r1,r2 } \end{aligned}$	$\begin{aligned} & \text { ADD } \\ & \text { r1,lr2 } \end{aligned}$	$\begin{gathered} \text { ADD } \\ \text { R2,R1 } \end{gathered}$	$\begin{gathered} \hline \text { ADD } \\ \text { IR2,R1 } \end{gathered}$	$\begin{aligned} & \text { ADD } \\ & \text { R1,IM } \end{aligned}$	$\begin{gathered} \mathrm{BOR} \\ \text { r0-Rb } \end{gathered}$
P	1	$\begin{gathered} \text { RLC } \\ \text { R1 } \end{gathered}$	RLC IR1	$\begin{aligned} & \text { ADC } \\ & \text { r1,r2 } \end{aligned}$	$\begin{aligned} & \text { ADC } \\ & \text { r1,lr2 } \end{aligned}$	$\begin{aligned} & \text { ADC } \\ & \text { R2,R1 } \end{aligned}$	$\begin{aligned} & \text { ADC } \\ & \text { IR2,R1 } \end{aligned}$	$\begin{aligned} & \text { ADC } \\ & \text { R1,IM } \end{aligned}$	$\begin{gathered} \mathrm{BCP} \\ \text { r1.b, R2 } \end{gathered}$
P	2	$\begin{gathered} \hline \text { INC } \\ \text { R1 } \end{gathered}$	INC IR1	$\begin{aligned} & \text { SUB } \\ & \text { r1,r2 } \end{aligned}$	$\begin{aligned} & \text { SUB } \\ & \text { r1,lr2 } \end{aligned}$	$\begin{gathered} \hline \text { SUB } \\ \text { R2,R1 } \end{gathered}$	$\begin{gathered} \text { SUB } \\ \text { IR2,R1 } \end{gathered}$	$\begin{aligned} & \text { SUB } \\ & \text { R1,IM } \end{aligned}$	$\begin{aligned} & \text { BXOR } \\ & \text { r0-Rb } \end{aligned}$
E	3	$\begin{gathered} \text { JP } \\ \text { IRR1 } \end{gathered}$	$\begin{gathered} \mathrm{SRP} / 0 / 1 \\ \mathrm{IM} \end{gathered}$	$\begin{aligned} & \text { SBC } \\ & \text { r1,r2 } \end{aligned}$	$\begin{aligned} & \text { SBC } \\ & \text { r1,lr2 } \end{aligned}$	$\begin{gathered} \text { SBC } \\ \text { R2,R1 } \end{gathered}$	$\begin{gathered} \text { SBC } \\ \text { IR2,R1 } \end{gathered}$	$\begin{aligned} & \text { SBC } \\ & \text { R1,IM } \end{aligned}$	$\begin{gathered} \text { BTJR } \\ \text { r2.b, RA } \end{gathered}$
R	4	$\begin{aligned} & \text { DA } \\ & \text { R1 } \end{aligned}$	$\begin{aligned} & \text { DA } \\ & \text { IR1 } \end{aligned}$	$\begin{gathered} \text { OR } \\ \text { r1, r2 } \end{gathered}$	$\begin{gathered} \mathrm{OR} \\ \mathrm{r} 1, \mathrm{lr} 2 \end{gathered}$	$\begin{gathered} \mathrm{OR} \\ \mathrm{R} 2, \mathrm{R} 1 \end{gathered}$	$\begin{gathered} \text { OR } \\ \text { IR2,R1 } \end{gathered}$	$\begin{gathered} \text { OR } \\ \text { R1,IM } \end{gathered}$	$\begin{gathered} \text { LDB } \\ \text { r0-Rb } \end{gathered}$
	5	$\begin{gathered} \text { POP } \\ \text { R1 } \end{gathered}$	$\begin{aligned} & \text { POP } \\ & \text { IR1 } \end{aligned}$	AND r1,r2	AND r1,Ir2	$\begin{gathered} \text { AND } \\ \text { R2,R1 } \end{gathered}$	$\begin{aligned} & \text { AND } \\ & \text { IR2,R1 } \end{aligned}$	AND R1,IM	$\begin{aligned} & \text { BITC } \\ & \text { r1.b } \end{aligned}$
N	6	$\begin{gathered} \mathrm{COM} \\ \mathrm{R} 1 \\ \hline \end{gathered}$	$\begin{gathered} \text { COM } \\ \text { IR1 } \end{gathered}$	$\begin{aligned} & \text { TCM } \\ & \text { r1,r2 } \end{aligned}$	$\begin{aligned} & \text { TCM } \\ & \text { r1,lr2 } \end{aligned}$	$\begin{gathered} \text { TCM } \\ \text { R2,R1 } \end{gathered}$	$\begin{gathered} \text { TCM } \\ \text { IR2,R1 } \end{gathered}$	TCM R1,IM	BAND r0-Rb
1	7	$\begin{aligned} & \text { PUSH } \\ & \text { R2 } \end{aligned}$	$\begin{aligned} & \text { PUSH } \\ & \text { IR2 } \end{aligned}$	$\begin{gathered} \mathrm{TM} \\ \mathrm{r} 1, \mathrm{r} 2 \end{gathered}$	$\begin{gathered} \mathrm{TM} \\ \mathrm{r} 1, \mathrm{lr} 2 \end{gathered}$	$\begin{gathered} \text { TM } \\ \text { R2,R1 } \end{gathered}$	$\begin{gathered} \text { TM } \\ \text { IR2,R1 } \end{gathered}$	$\begin{gathered} \text { TM } \\ \mathrm{R} 1, \mathrm{IM} \end{gathered}$	$\begin{aligned} & \hline \text { BIT } \\ & \text { r1.b } \end{aligned}$
B	8	$\begin{gathered} \text { DECW } \\ \text { RR1 } \end{gathered}$	$\begin{gathered} \text { DECW } \\ \text { IR1 } \\ \hline \end{gathered}$	$\begin{gathered} \text { PUSHUD } \\ \text { IR1,R2 } \end{gathered}$	$\begin{aligned} & \text { PUSHUI } \\ & \text { IR1,R2 } \end{aligned}$	$\begin{gathered} \text { MULT } \\ \text { R2,RR1 } \end{gathered}$	$\begin{aligned} & \text { MULT } \\ & \text { IR2,RR1 } \end{aligned}$	MULT IM,RR1	$\begin{gathered} \mathrm{LD} \\ \mathrm{r} 1, \mathrm{x}, \mathrm{r} 2 \end{gathered}$
B	9	$\begin{aligned} & \text { RL } \\ & \text { R1 } \end{aligned}$	$\begin{aligned} & \text { RL } \\ & \text { IR1 } \end{aligned}$	POPUD IR2,R1	$\begin{aligned} & \text { POPUI } \\ & \text { IR2,R1 } \end{aligned}$	$\begin{gathered} \text { DIV } \\ \text { R2,RR1 } \end{gathered}$	DIV IR2,RR1	DIV IM,RR1	$\begin{gathered} \mathrm{LD} \\ \mathrm{r} 2, \mathrm{x}, \mathrm{r} 1 \end{gathered}$
L	A	$\begin{gathered} \hline \text { INCW } \\ \text { RR1 } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { INCW } \\ \text { IR1 } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{CP} \\ \mathrm{r} 1, \mathrm{r} 2 \end{gathered}$	$\begin{gathered} \mathrm{CP} \\ \mathrm{r} 1, \mathrm{lr} 2 \end{gathered}$	$\begin{gathered} \mathrm{CP} \\ \mathrm{R} 2, \mathrm{R} 1 \end{gathered}$	$\begin{gathered} \hline \mathrm{CP} \\ \mathrm{IR} 2, \mathrm{R} 1 \end{gathered}$	$\begin{gathered} \hline \mathrm{CP} \\ \mathrm{R} 1, \mathrm{IM} \end{gathered}$	$\begin{gathered} \text { LDC } \\ \mathrm{r} 1, \operatorname{lrr2,~xL} \end{gathered}$
E	B	$\begin{gathered} \hline \text { CLR } \\ \text { R1 } \end{gathered}$	$\begin{aligned} & \hline \text { CLR } \\ & \text { IR1 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { XOR } \\ & \text { r1,r2 } \end{aligned}$	$\begin{aligned} & \text { XOR } \\ & \text { r1,lr2 } \end{aligned}$	$\begin{gathered} \mathrm{XOR} \\ \mathrm{R} 2, \mathrm{R} 1 \end{gathered}$	$\begin{gathered} \text { XOR } \\ \text { IR2,R1 } \end{gathered}$	$\begin{gathered} \text { XOR } \\ \text { R1,IM } \end{gathered}$	$\begin{gathered} \text { LDC } \\ \text { r2, } \mathrm{Irr2}, \mathrm{xL} \end{gathered}$
	C	$\begin{gathered} \mathrm{RRC} \\ \mathrm{R} 1 \end{gathered}$	$\begin{aligned} & \text { RRC } \\ & \text { IR1 } \end{aligned}$	$\begin{aligned} & \text { CPIJE } \\ & \text { Ir,r2,RA } \end{aligned}$	$\begin{aligned} & \text { LDC } \\ & \text { r1,lr2 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { LDW } \\ \text { RR2,RR1 } \end{gathered}$	$\begin{aligned} & \text { LDW } \\ & \text { IR2,RR1 } \end{aligned}$	$\begin{gathered} \text { LDW } \\ \text { RR1,IML } \end{gathered}$	$\begin{gathered} \mathrm{LD} \\ \mathrm{r} 1, \mathrm{lr} 2 \\ \hline \end{gathered}$
H	D	$\begin{gathered} \hline \text { SRA } \\ \text { R1 } \end{gathered}$	SRA IR1	CPIJNE Irr,r2,RA	$\begin{aligned} & \text { LDC } \\ & \text { r2,Irr1 } \end{aligned}$	CALL $\mathrm{IA} 1$		$\begin{gathered} \text { LD } \\ \text { IR1,IM } \end{gathered}$	$\begin{gathered} \mathrm{LD} \\ \mathrm{Ir1} 1, \mathrm{r} 2 \end{gathered}$
E	E	$\begin{aligned} & \text { RR } \\ & \text { R1 } \end{aligned}$	$\begin{aligned} & \text { RR } \\ & \text { IR1 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LDCD } \\ & \text { r1,lrr2 } \end{aligned}$	$\begin{aligned} & \text { LDCI } \\ & \text { r1,lr22 } \end{aligned}$	$\begin{gathered} \mathrm{LD} \\ \mathrm{R} 2, \mathrm{R} 1 \\ \hline \end{gathered}$	$\begin{gathered} \text { LD } \\ \text { R2,IR1 } \end{gathered}$	$\begin{gathered} \text { LD } \\ \text { R1,IM } \\ \hline \end{gathered}$	$\begin{gathered} \text { LDC } \\ \text { r1, Irr2, xs } \end{gathered}$
X	F	SWAP R1	SWAP IR1	$\begin{gathered} \text { LDCPD } \\ \text { r2, } \mathrm{lr} 1 \\ \hline \end{gathered}$	$\begin{aligned} & \text { LDCPI } \\ & \text { r2,lrr1 } \end{aligned}$	CALL IRR1	$\begin{gathered} \text { LD } \\ \text { IR2,R1 } \end{gathered}$	CALL DA1	$\begin{aligned} & \text { LDC } \\ & \text { r2, } \operatorname{lrr1} \text {, xs } \end{aligned}$

Table 6-5. OPCODE Quick Reference (Continued)

CONDITION CODES

The opcode of a conditional jump always contains a 4-bit field called the condition code (cc). This specifies under which conditions it is to execute the jump. For example, a conditional jump with the condition code for "equal" after a compare operation only jumps if the two operands are equal. Condition codes are listed in Table 6-6.

The carry (C), zero (Z), sign (S), and overflow (V) flags are used to control the operation of conditional jump instructions.

Table 6-6. Condition Codes

Binary	Mnemonic	Description	Flags Set
0000	F	Always false	-
1000	T	Always true	-
$0111{ }^{(1)}$	C	Carry	$C=1$
$1111{ }^{(1)}$	NC	No carry	$\mathrm{C}=0$
$0110{ }^{(1)}$	Z	Zero	$Z=1$
1110 (1)	NZ	Not zero	$Z=0$
1101	PL	Plus	$\mathrm{S}=0$
0101	MI	Minus	$\mathrm{S}=1$
0100	OV	Overflow	$\mathrm{V}=1$
1100	NOV	No overflow	$\mathrm{V}=0$
$0110{ }^{(1)}$	EQ	Equal	$Z=1$
1110 (1)	NE	Not equal	$\mathrm{Z}=0$
1001	GE	Greater than or equal	$(\mathrm{S} \mathrm{XOR} \mathrm{V})=0$
0001	LT	Less than	$(\mathrm{S} \mathrm{XOR} \mathrm{V})=1$
1010	GT	Greater than	$(\mathrm{Z}$ OR (S XOR V $)$) $=0$
0010	LE	Less than or equal	$(\mathrm{Z}$ OR (S XOR V $)$) $=1$
$1111{ }^{(1)}$	UGE	Unsigned greater than or equal	$\mathrm{C}=0$
$0111{ }^{(1)}$	ULT	Unsigned less than	$C=1$
1011	UGT	Unsigned greater than	$(\mathrm{C}=0 \mathrm{AND} \mathrm{Z}=0)=1$
0011	ULE	Unsigned less than or equal	(C OR Z) $=1$

NOTES:

1. It indicate condition codes which are related to two different mnemonics but which test the same flag. For example, Z and $E Q$ are both true if the zero flag (Z) is set, but after an ADD instruction, Z would probably be used. Following a CP instruction, you would probably want to use the instruction EQ.
2. For operations using unsigned numbers, the special condition codes UGE, ULT, UGT, and ULE must be used.

INSTRUCTION DESCRIPTIONS

This Chapter contains detailed information and programming examples for each instruction in the S3C8-series instruction set. Information is arranged in a consistent format for improved readability and for quick reference. The following information is included in each instruction description:

- Instruction name (mnemonic)
- Full instruction name
- Source/destination format of the instruction operand
- Shorthand notation of the instruction's operation
- Textual description of the instruction's effect
- Flag settings that may be affected by the instruction
- Detailed description of the instruction's format, execution time, and addressing mode(s)
- Programming example(s) explaining how to use the instruction

ADC - Add with Carry

ADC dst,src
Operation: \quad dst $\leftarrow d s t+$ src +c
The source operand, along with the carry flag setting, is added to the destination operand and the sum is stored in the destination. The contents of the source are unaffected. Two's-complement addition is performed. In multiple-precision arithmetic, this instruction lets the carry value from the addition of low-order operands be carried into the addition of high-order operands.

Flags: \quad C: Set if there is a carry from the most significant bit of the result; cleared otherwise.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign and the result is of the opposite sign; cleared otherwise.

D: Always cleared to " 0 ".
H: Set if there is a carry from the most significant bit of the low-order four bits of the result; cleared otherwise.

Format:

			Bytes	Cycles	Opcode (Hex)	Addr Mode dst \quad srC	
opc	dst \\| src		2	4	12	r	
				6	13	Ir	
opc	src	dst	3	6	14	$R \quad R$	
					15	$\mathrm{R} \quad \mathrm{IR}$	
opc	dst	src	3	6	16	$\mathrm{R} \quad \mathrm{M}$	

Examples: Given: R1 $=10 \mathrm{H}, \mathrm{R} 2=03 \mathrm{H}, \mathrm{C}$ flag $=" 1$ ", register $01 \mathrm{H}=20 \mathrm{H}$, register $02 \mathrm{H}=03 \mathrm{H}$, and register $03 \mathrm{H}=0 \mathrm{AH}$:

ADC	$R 1, R 2$	\rightarrow	$R 1=14 \mathrm{H}, \mathrm{R2}=03 \mathrm{H}$
ADC	$R 1, @ R 2$	\rightarrow	$R 1=1 B H, R 2=03 H$
ADC	$01 H, 02 H$	\rightarrow	Register $01 \mathrm{H}=24 \mathrm{H}$, register $02 \mathrm{H}=03 \mathrm{H}$
ADC	$01 \mathrm{H}, @ 02 \mathrm{H}$	\rightarrow	Register $01 \mathrm{H}=2 \mathrm{BH}$, register $02 \mathrm{H}=03 \mathrm{H}$
ADC	$01 \mathrm{H}, \# 11 \mathrm{H}$	\rightarrow	Register $01 \mathrm{H}=32 \mathrm{H}$

In the first example, the destination register R1 contains the value 10 H , the carry flag is set to "1" and the source working register R2 contains the value 03H. The statement "ADC R1,R2" adds 03 H and the carry flag value ("1") to the destination value 10 H , leaving 14 H in the register R1.

ADD - Add

ADD	$d s t$, src
Operation:	dst $\leftarrow d s t+$ src

The source operand is added to the destination operand and the sum is stored in the destination. The contents of the source are unaffected. Two's-complement addition is performed.

Flags: \quad C: Set if there is a carry from the most significant bit of the result; cleared otherwise.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred, that is, if both operands are of the same sign and the result is of the opposite sign; cleared otherwise.
D: Always cleared to "0".
H: Set if a carry from the low-order nibble occurred.

Format:

Examples: Given: $R 1=12 \mathrm{H}, \mathrm{R} 2=03 \mathrm{H}$, register $01 \mathrm{H}=21 \mathrm{H}$, register $02 \mathrm{H}=03 \mathrm{H}$, register $03 \mathrm{H}=0 \mathrm{AH}$:

ADD	$R 1, R 2$	\rightarrow	$R 1=15 \mathrm{H}, \mathrm{R2}=03 \mathrm{H}$
ADD	$R 1, @ R 2$	\rightarrow	$R 1=1 \mathrm{CH}, R 2=03 \mathrm{H}$
ADD	$01 \mathrm{H}, 02 \mathrm{H}$	\rightarrow	Register $01 \mathrm{H}=24 \mathrm{H}$, register $02 \mathrm{H}=03 \mathrm{H}$
ADD	$01 \mathrm{H}, @ 02 \mathrm{H}$	\rightarrow	Register $01 \mathrm{H}=2 \mathrm{BH}$, register $02 \mathrm{H}=03 \mathrm{H}$
ADD	$01 \mathrm{H}, \# 25 \mathrm{H}$	\rightarrow	Register $01 \mathrm{H}=46 \mathrm{H}$

In the first example, the destination working register R 1 contains 12 H and the source working register R2 contains 03 H . The statement "ADD R1,R2" adds 03 H to 12 H , leaving the value 15 H in the register R1.

AND - Logical AND

AND dst,src
Operation: \quad dst \leftarrow dst AND src
The source operand is logically ANDed with the destination operand. The result is stored in the destination. The AND operation causes a "1" bit to be stored whenever the corresponding bits in the two operands are both logic ones; otherwise a "0" bit value is stored. The contents of the source are unaffected.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Always cleared to "0".
D: Unaffected.
H: Unaffected.

Format:

Examples: \quad Given: $\mathrm{R} 1=12 \mathrm{H}, \mathrm{R} 2=03 \mathrm{H}$, register $01 \mathrm{H}=21 \mathrm{H}$, register $02 \mathrm{H}=03 \mathrm{H}$, register $03 \mathrm{H}=0 \mathrm{AH}$:

AND	$R 1, R 2$	\rightarrow	$R 1=02 \mathrm{H}, \mathrm{R2}=03 \mathrm{H}$
AND	$R 1, @ R 2$	\rightarrow	$R 1=02 \mathrm{H}, \mathrm{R} 2=03 \mathrm{H}$
AND	$01 \mathrm{H}, 02 \mathrm{H}$	\rightarrow	Register $01 \mathrm{H}=01 \mathrm{H}$, register $02 \mathrm{H}=03 \mathrm{H}$
AND	$01 \mathrm{H}, @ 02 \mathrm{H}$	\rightarrow	Register $01 \mathrm{H}=00 \mathrm{H}$, register $02 \mathrm{H}=03 \mathrm{H}$
AND	$01 \mathrm{H}, \# 25 \mathrm{H}$	\rightarrow	Register $01 \mathrm{H}=21 \mathrm{H}$

In the first example, the destination working register R1 contains the value 12H and the source working register R2 contains 03 H . The statement "AND R1,R2" logically ANDs the source operand 03 H with the destination operand value 12 H , leaving the value 02 H in the register R 1 .

BAND - Bit AND

BAND dst,src.b
BAND dst.b,src
Operation: $\quad \operatorname{dst}(0) \leftarrow \operatorname{dst}(0)$ AND $\operatorname{src}(b)$
$\mathrm{dst}(\mathrm{b}) \leftarrow \mathrm{dst}(\mathrm{b})$ AND $\operatorname{src}(0)$
The specified bit of the source (or the destination) is logically ANDed with the zero bit (LSB) of the destination (or the source). The resultant bit is stored in the specified bit of the destination. No other bits of the destination are affected. The source is unaffected.

Flags: \quad C: Unaffected.
Z: Set if the result is " 0 "; cleared otherwise.
S: Cleared to "0".
V: Undefined.
D: Unaffected.
H: Unaffected.

Format:

			Bytes	Cycles	Opcode (Hex)		lode SrC	
opc	dst \| b	0	src	3	6	67	r0	Rb
opc	src \| b	1	dst	3	6	67	Rb	r0

NOTE: In the second byte of the 3-byte instruction formats, the destination (or the source) address is four bits, the bit address " b " is three bits, and the LSB address value is one bit in length.

Examples: Given: $\mathrm{R} 1=07 \mathrm{H}$ and register $01 \mathrm{H}=05 \mathrm{H}$:

BAND	$R 1,01 \mathrm{H} .1$	\rightarrow	$R 1=06 \mathrm{H}$, register $01 \mathrm{H}=05 \mathrm{H}$
BAND	$01 \mathrm{H} .1, \mathrm{R} 1$	\rightarrow	$R e g i s t e r ~$
$01 \mathrm{H}=05 \mathrm{H}, \mathrm{R} 1=07 \mathrm{H}$			

In the first example, the source register 01 H contains the value 05 H (00000101B) and the destination working register R1 contains 07 H (00000111 B). The statement "BAND R1,01H.1" ANDs the bit 1 value of the source register (" 0 ") with the bit 0 value of the register R1 (destination), leaving the value $06 \mathrm{H}(00000110 \mathrm{~B})$ in the register R1.

BCP - Bit Compare

BCP dst,src.b
Operation: $\quad \operatorname{dst}(0)-\operatorname{src}(b)$
The specified bit of the source is compared to (subtracted from) bit zero (LSB) of the destination. The zero flag is set if the bits are the same; otherwise it is cleared. The contents of both operands are unaffected by the comparison.

Flags: C: Unaffected.
Z: Set if the two bits are the same; cleared otherwise.
S: Cleared to "0".
V: Undefined.
D: Unaffected.
H: Unaffected.

Format:

opc	dst $\|\mathrm{b}\| 0$	src

Bytes	Cycles	Opcode	Addr Mode	
3	6	17	$\underline{\text { dst }}$	$\underline{\text { src }}$
3	6		Rb	

NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address " 0 " is three bits, and the LSB address value is one bit in length.

Example: Given: $\mathrm{R} 1=07 \mathrm{H}$ and register $01 \mathrm{H}=01 \mathrm{H}$:
BCP R1,01H.1 $\rightarrow \quad$ R1 $=07 \mathrm{H}$, register $01 \mathrm{H}=01 \mathrm{H}$
If the destination working register R1 contains the value $07 \mathrm{H}(00000111 \mathrm{~B})$ and the source register 01 H contains the value $01 \mathrm{H}(00000001 \mathrm{~B})$, the statement "BCP R1,01H.1" compares bit one of the source register $(01 \mathrm{H})$ and bit zero of the destination register (R1). Because the bit values are not identical, the zero flag bit (Z) is cleared in the FLAGS register (0D5H).

BITC-Bit Complement

BITC dst.b
Operation: $\quad \operatorname{dst}(\mathrm{b}) \leftarrow$ NOT dst(b)
This instruction complements the specified bit within the destination without affecting any other bit in the destination.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Cleared to "0".
V: Undefined.
D: Unaffected.
H: Unaffected.

Format:

		Bytes	Cycles	Opcode (Hex)	Addr Mode dst
opc	dst $\|\mathrm{b}\| 0$	2	4	57	rb

NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address " b " is three bits, and the LSB address value is one bit in length.

Example: Given: R1 $=07 \mathrm{H}$
$\begin{array}{lll}\text { BITC } & \mathrm{R} 1.1 \quad \rightarrow \quad \mathrm{R} 1=05 \mathrm{H}\end{array}$
If the working register R1 contains the value 07H (00000111B), the statement "BITC R1.1" complements bit one of the destination and leaves the value 05 H (00000101B) in the register R1. Because the result of the complement is not " 0 ", the zero flag (Z) in the FLAGS register (0D5H) is cleared.

BITR — Bit Reset

BITR dst.b

Operation: $\quad \operatorname{dst}(\mathrm{b}) \leftarrow 0$
The BITR instruction clears the specified bit within the destination without affecting any other bit in the destination.

Flags: \quad No flags are affected.

Format:

	Bytes	Cycles	Opcode (Hex)	Addr Mode dst	
opc	dst $\|\mathrm{b}\| 0$	2	4	77	rb

NOTE: In the second byte of the instruction format, the destination address is four bits, the bit
address " 0 " is three bits, and the LSB address value is one bit in length.

Example: Given: $\mathrm{R} 1=07 \mathrm{H}$:
BITR \quad R1.1 $\rightarrow \quad$ R1 $=05 \mathrm{H}$
If the value of the working register R 1 is $07 \mathrm{H}(00000111 \mathrm{~B})$, the statement "BITR R1.1" clears bit one of the destination register R1, leaving the value 05H (00000101B).

BITS - Bit Set

BITS dst.b
Operation: $\quad \operatorname{dst}(\mathrm{b}) \leftarrow 1$
The BITS instruction sets the specified bit within the destination without affecting any other bit in the destination.

Flags: \quad No flags are affected.

Format:

Bytes	Cycles	Opcode (Hex)	Addr Mode $\underline{\text { dst }}$
2	4	77	rb

NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address " b " is three bits, and the LSB address value is one bit in length.

Example: Given: R1 $=07 \mathrm{H}$:
BITS R1.3 $\quad \rightarrow \quad$ R1 $=0 \mathrm{FH}$
If the working register R1 contains the value 07H (00000111B), the statement "BITS R1.3" sets bit three of the destination register R1 to "1", leaving the value 0FH (00001111B).

BOR — Bit OR

BOR dst,src.b
BOR dst.b,src
Operation: $\quad \operatorname{dst}(0) \leftarrow \operatorname{dst}(0)$ OR $\operatorname{src}(b)$
or
$\operatorname{dst}(\mathrm{b}) \leftarrow \operatorname{dst}(\mathrm{b}) \mathrm{OR} \operatorname{src}(0)$
The specified bit of the source (or the destination) is logically ORed with bit zero (LSB) of the destination (or the source). The resulting bit value is stored in the specified bit of the destination. No other bits of the destination are affected. The source is unaffected.

Flags: $\quad \mathrm{C}:$ Unaffected.
Z: Set if the result is " 0 "; cleared otherwise.
S: Cleared to "0".
V: Undefined.
D: Unaffected.
H: Unaffected.

Format:

			Bytes	Cycles	Opcode (Hex)	Addr Mode	
opc	dst \| b 0	src	3	6	07	r0	Rb
opc	src \| $\mathrm{b} \mid 1$	dst	3	6	07	Rb	r0

NOTE: In the second byte of the 3-byte instruction format, the destination (or the source) address is four bits, the bit address " b " is three bits, and the LSB address value is one bit.

Examples: Given: R1 $=07 \mathrm{H}$ and register $01 \mathrm{H}=03 \mathrm{H}$:
BOR R1, 01H. $1 \quad \rightarrow \quad \mathrm{R} 1=07 \mathrm{H}$, register $01 \mathrm{H}=03 \mathrm{H}$
BOR 01H.2, R1 $\rightarrow \quad$ Register $01 \mathrm{H}=07 \mathrm{H}, \mathrm{R} 1=07 \mathrm{H}$
In the first example, the destination working register R1 contains the value $07 \mathrm{H}(00000111 \mathrm{~B})$ and the source register 01 H the value 03 H (00000011B). The statement "BOR R1,01H.1" logically ORs bit one of the register 01 H (source) with bit zero of R1 (destination). This leaves the same value (07H) in the working register R1.

In the second example, the destination register 01 H contains the value $03 \mathrm{H}(00000011 \mathrm{~B})$ and the source working register R1 the value 07 H (00000111B). The statement "BOR 01H.2,R1" logically ORs bit two of the register 01 H (destination) with bit zero of R1 (source). This leaves the value 07 H in the register 01 H .

BTJRF - Bit Test, Jump Relative on False

BTJRF dst,src.b
Operation: If $\operatorname{src}(\mathrm{b})$ is a " 0 ", then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{dst}$
The specified bit within the source operand is tested. If it is a " 0 ", the relative address is added to the program counter and control passes to the statement whose address is currently in the program counter. Otherwise, the instruction following the BTJRF instruction is executed.

Flags: \quad No flags are affected.

Format:

| (note) | | Bytes | Cycles | Opcode
 (Hex) | Addr Mode
 dst | $\underline{\text { src }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

NOTE: In the second byte of the instruction format, the source address is four bits, the bit address "b" is three bits, and the LSB address value is one bit in length.

Example: Given: R1 $=07 \mathrm{H}$:
BTJRF SKIP,R1.3 $\rightarrow \quad$ PC jumps to SKIP location
If the working register R1 contains the value 07H (00000111B), the statement "BTJRF SKIP,R1.3" tests bit 3. Because it is "0", the relative address is added to the PC and the PC jumps to the memory location pointed to by the SKIP (Remember that the memory location must be within the allowed range of +127 to -128).

BTJRT — Bit Test, Jump Relative on True

BTJRT dst,src.b
Operation: If $\operatorname{src}(\mathrm{b})$ is a "1", then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{dst}$
The specified bit within the source operand is tested. If it is a "1", the relative address is added to the program counter and control passes to the statement whose address is now in the PC. Otherwise, the instruction following the BTJRT instruction is executed.

Flags: \quad No flags are affected.

Format:

(note)			Bytes	Cycles	Opcode (Hex)		
opc	src \| $\mathrm{b} \mid 1$	dst	3	10	37	RA	rb

NOTE: In the second byte of the instruction format, the source address is four bits, the bit address " b " is three bits, and the LSB address value is one bit in length.

Example: Given: $\mathrm{R} 1=07 \mathrm{H}$:
BTJRT SKIP,R1.1
If the working register R1 contains the value 07H (00000111B), the statement "BTJRT SKIP,R1.1" tests bit one in the source register (R1). Because it is a "1", the relative address is added to the PC and the PC jumps to the memory location pointed to by the SKIP.

Remember that the memory location addressed by the BTJRT instruction must be within the allowed range of +127 to -128 .

BXOR — Bit XOR

BXOR dst,src.b
BXOR dst.b,src
Operation: $\quad \operatorname{dst}(0) \leftarrow \operatorname{dst}(0)$ XOR $\operatorname{src}(b)$
$\mathrm{dst}(\mathrm{b}) \leftarrow \mathrm{dst}(\mathrm{b}) \times O R \operatorname{src}(0)$
The specified bit of the source (or the destination) is logically exclusive-ORed with bit zero (LSB) of the destination (or the source). The result bit is stored in the specified bit of the destination. No other bits of the destination are affected. The source is unaffected.

Flags: \quad C: Unaffected.
Z: Set if the result is " 0 "; cleared otherwise.
S: Cleared to "0".
V: Undefined.
D: Unaffected.
H: Unaffected.

Format:

			Bytes	Cycles	Opcode (Hex)	Addr Mode dst src		
opc	dst $\|\mathrm{b}\| 0$	src	3	6	27	r0	Rb	
opc	src\|b	1	dst	3	6	27	Rb	r0

NOTE: In the second byte of the 3-byte instruction format, the destination (or the source) address is four bits, the bit address " b " is three bits, and the LSB address value is one bit in length.

Examples: Given: $\mathrm{R} 1=07 \mathrm{H}(00000111 \mathrm{~B})$ and register $01 \mathrm{H}=03 \mathrm{H}(00000011 \mathrm{~B})$:

$$
\begin{array}{llll}
\text { BXOR } & \text { R1,01H.1 } & \rightarrow & R 1=06 \mathrm{H}, \text { register } 01 \mathrm{H}=03 \mathrm{H} \\
\text { BXOR } & 01 \mathrm{H} .2, R 1 & \rightarrow & \text { Register } 01 \mathrm{H}=07 \mathrm{H}, \mathrm{R} 1=07 \mathrm{H}
\end{array}
$$

In the first example, the destination working register R1 has the value 07H (00000111B) and the source register 01 H has the value $03 \mathrm{H}(00000011 \mathrm{~B})$. The statement "BXOR R1,01H.1" exclusiveORs bit one of the register 01 H (the source) with bit zero of R1 (the destination). The result bit value is stored in bit zero of R 1 , changing its value from 07 H to 06 H . The value of the source register 01 H is unaffected.

CALL - Call Procedure

CALL dst

Operation: $\quad \mathrm{SP} \leftarrow \mathrm{SP}-1$
$@ S P \leftarrow P C L$
$\mathrm{SP} \leftarrow \mathrm{SP}-1$
$@ S P \leftarrow P C H$
$\mathrm{PC} \leftarrow$ dst
The contents of the program counter are pushed onto the top of the stack. The program counter value used is the address of the first instruction following the CALL instruction. The specified destination address is then loaded into the program counter and points to the first instruction of a procedure. At the end of the procedure the return instruction (RET) can be used to return to the original program flow. RET pops the top of the stack back into the program counter.
Flags: \quad No flags are affected.

Format:

		Bytes	Cycles	Opcode (Hex)	Addr Mode dst
opc	dst			14	F6

Examples: Given: R0 $=35 \mathrm{H}, \mathrm{R1}=21 \mathrm{H}, \mathrm{PC}=1 \mathrm{~A} 47 \mathrm{H}$, and $\mathrm{SP}=0002 \mathrm{H}$:
CALL $3521 \mathrm{H} \quad \rightarrow \quad \mathrm{SP}=0000 \mathrm{H}$
(Memory locations $0000 \mathrm{H}=1 \mathrm{AH}, 0001 \mathrm{H}=4 \mathrm{AH}$, where, 4AH is the address that follows the instruction.)

CALL	$@ R R 0$	\rightarrow	$S P=0000 \mathrm{H}(0000 \mathrm{H}=1 \mathrm{AH}, 0001 \mathrm{H}=49 \mathrm{H})$
CALL	$\# 40 \mathrm{H}$	\rightarrow	$S P=0000 \mathrm{H}(0000 \mathrm{H}=1 \mathrm{AH}, 0001 \mathrm{H}=49 \mathrm{H})$

In the first example, if the program counter value is 1 A 47 H and the stack pointer contains the value 0002 H , the statement "CALL 3521 H " pushes the current PC value onto the top of the stack. The stack pointer now points to the memory location 0000 H . The PC is then loaded with the value 3521 H , the address of the first instruction in the program sequence to be executed.

If the contents of the program counter and the stack pointer are the same as in the first example, the statement "CALL @RR0" produces the same result except that the 49 H is stored in stack location 0001 H (because the two-byte instruction format was used). The PC is then loaded with the value 3521 H , the address of the first instruction in the program sequence to be executed. Assuming that the contents of the program counter and the stack pointer are the same as in the first example, if the program address 0040 H contains 35 H and the program address 0041 H contains 21 H , the statement "CALL \#40H" produces the same result as in the second example.

CCF - Complement Carry Flag

CCF
Operation: $\quad \mathrm{C} \leftarrow$ NOT C
The carry flag (C) is complemented. If $\mathrm{C}=$ "1", the value of the carry flag is changed to logic zero. If $C=$ " 0 ", the value of the carry flag is changed to logic one.

Flags: C: Complemented.
No other flags are affected.

Format:

| | Bytes | Cycles | Opcode
 (Hex) |
| :---: | :---: | :---: | :---: | :---: |
| opc | 1 | 4 | $E F$ |

Example: Given: The carry flag = "0":
CCF
If the carry flag $=" 0$ ", the CCF instruction complements it in the FLAGS register (0D5H), changing its value from logic zero to logic one.

CLR - Clear

CLR	dst
Operation:	dst $\leftarrow " 0 "$

The destination location is cleared to " 0 ".
Flags: \quad No flags are affected.
Format:

								Bytes	Cycles	Opcode (Hex)	Addr Mode dst
opc	dst	2	4	B0	R						

Examples: Given: Register $00 \mathrm{H}=4 \mathrm{FH}$, register $01 \mathrm{H}=02 \mathrm{H}$, and register $02 \mathrm{H}=5 \mathrm{EH}$:

CLR	00 H	\rightarrow	Register $00 \mathrm{H}=00 \mathrm{H}$
CLR	$@ 01 \mathrm{H}$	\rightarrow	Register $01 \mathrm{H}=02 \mathrm{H}$, register $02 \mathrm{H}=00 \mathrm{H}$

In Register (R) addressing mode, the statement "CLR 00 H " clears the destination register 00 H value to 00 H .

In the second example, the statement "CLR @01H" uses Indirect Register (IR) addressing mode to clear the 02 H register value to 00 H .

COM - Complement

COM	$d s t$
Operation:	dst \leftarrow NOT dst

The contents of the destination location are complemented (one's complement). All "1s" are changed to "0s", and vice-versa.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
\mathbf{S} : Set if the result bit 7 is set; cleared otherwise.
V: Always reset to "0".
D: Unaffected.
H: Unaffected.

Format:

								Bytes	Cycles	Opcode (Hex)	Addr Mode dst
opc	dst	2	4	60	R						

Examples: Given: R1 $=07 \mathrm{H}$ and register $07 \mathrm{H}=0 \mathrm{~F} 1 \mathrm{H}$:
COM \quad R1 $\quad \rightarrow \quad$ R1 $=0 \mathrm{~F} 8 \mathrm{H}$
COM @R1 $\rightarrow \quad$ R1 $=07 \mathrm{H}$, register $07 \mathrm{H}=0 \mathrm{EH}$

In the first example, the destination working register R1 contains the value 07H (00000111B). The statement "COM R1" complements all the bits in R1: all logic ones are changed to logic zeros, and logic zeros to logic ones, leaving the value 0F8H (11111000B).

In the second example, Indirect Register (IR) addressing mode is used to complement the value of the destination register 07 H (11110001B), leaving the new value 0EH (00001110B).

CP - Compare

CP dst,src
Operation: dst-src
The source operand is compared to (subtracted from) the destination operand, and the appropriate flags are set accordingly. The contents of both operands are unaffected by the comparison.

Flags: \quad C: Set if a "borrow" occurred ($\mathrm{src}>\mathrm{dst}$); cleared otherwise.
Z: Set if the result is " 0 "; cleared otherwise.
\mathbf{S} : Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred; cleared otherwise.
D: Unaffected.
H: Unaffected.

Format:

Examples: 1. Given: $\mathrm{R} 1=02 \mathrm{H}$ and $\mathrm{R} 2=03 \mathrm{H}$:
$\mathrm{CP} \quad \mathrm{R} 1, \mathrm{R} 2 \quad \rightarrow \quad$ Set the C and S flags
The destination working register R1 contains the value 02 H and the source register R2 contains the value 03H. The statement "CP R1,R2" subtracts the R2 value (source/subtrahend) from the R1 value (destination/minuend). Because a "borrow" occurs and the difference is negative, the C and the S flag values are "1".
2. Given: $\mathrm{R} 1=05 \mathrm{H}$ and $\mathrm{R} 2=0 \mathrm{AH}$:

CP	R1,R2
JP	UGE,SKIP
INC	R1
SKIP	LD R3,R1

In this example, the destination working register R 1 contains the value 05 H which is less than the contents of the source working register R2 (0AH). The statement "CP R1,R2" generates $C=$ "1" and the JP instruction does not jump to the SKIP location. After the statement "LD R3,R1" executes, the value 06 H remains in the working register R3.

CPIJE - Compare, Increment, and Jump on Equal

CPIJE dst,src,RA
Operation: If dst-src $=$ " 0 ", $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{RA}$
$\mathrm{lr} \leftarrow \mathrm{Ir}+1$
The source operand is compared to (subtracted from) the destination operand. If the result is " 0 ", the relative address is added to the program counter and control passes to the statement whose address is now in the program counter. Otherwise, the instruction immediately following the CPIJE instruction is executed. In either case, the source pointer is incremented by one before the next instruction is executed.

Flags: \quad No flags are affected.

Format:

| | Bytes | Cycles | Opcode
 (Hex) | Addr Mode
 dst | $\underline{\text { src }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Example: Given: R1 $=02 \mathrm{H}, \mathrm{R} 2=03 \mathrm{H}$, and register $03 \mathrm{H}=02 \mathrm{H}$:
CPIJE \quad R1,@R2,SKIP $\rightarrow \quad$ R2 $=04 \mathrm{H}, \mathrm{PC}$ jumps to SKIP location
In this example, the working register R1 contains the value 02 H , the working register R2 the value 03 H , and the register 03 contains 02 H . The statement "CPIJE R1,@R2,SKIP" compares the @R2 value $02 \mathrm{H}(00000010 \mathrm{~B})$ to $02 \mathrm{H}(00000010 \mathrm{~B})$. Because the result of the comparison is equal, the relative address is added to the PC and the PC then jumps to the memory location pointed to by SKIP. The source register (R2) is incremented by one, leaving a value of 04 H .

Remember that the memory location addressed by the CPIJE instruction must be within the allowed range of +127 to -128 .

CPIJNE - Compare, Increment, and Jump on Non-Equal

CPIJNE dst,src,RA
Operation: If dst-src ; " 0 ", $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{RA}$
$\mathrm{lr} \leftarrow \operatorname{lr}+1$
The source operand is compared to (subtracted from) the destination operand. If the result is not " 0 ", the relative address is added to the program counter and control passes to the statement whose address is now in the program counter. Otherwise the instruction following the CPIJNE instruction is executed. In either case the source pointer is incremented by one before the next instruction.

Flags: \quad No flags are affected.

Format:

| | Bytes | Cycles | Opcode
 (Hex) | Addr Mode
 dst | $\underline{\text { src }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Example: Given: R1 $=02 \mathrm{H}, \mathrm{R} 2=03 \mathrm{H}$, and register $03 \mathrm{H}=04 \mathrm{H}$:
CPIJNE \quad R1,@R2,SKIP $\rightarrow \quad$ R2 $=04 \mathrm{H}, \mathrm{PC}$ jumps to SKIP location
The working register R1 contains the value 02 H , the working register R 2 (the source pointer) the value 03 H , and the general register 03 the value 04 H . The statement "CPIJNE R1,@R2,SKIP" subtracts $04 \mathrm{H}(00000100 \mathrm{~B})$ from $02 \mathrm{H}(00000010 \mathrm{~B})$. Because the result of the comparison is nonequal, the relative address is added to the PC and the PC then jumps to the memory location pointed to by SKIP. The source pointer register (R2) is also incremented by one, leaving a value of 04H.

Remember that the memory location addressed by the CPIJNE instruction must be within the allowed range of +127 to -128 .

DA — Decimal Adjust

DA dst
Operation: \quad dst \leftarrow DA dst
The destination operand is adjusted to form two 4-bit BCD digits following an addition or subtraction operation. For addition (ADD, ADC) or subtraction (SUB, SBC), the following table indicates the operation performed (The operation is undefined if the destination operand is not the result of a valid addition or subtraction of BCD digits):

Instruction	Carry Before DA	$\begin{gathered} \text { Bits 4-7 } \\ \text { Value (Hex) } \end{gathered}$	H Flag Before DA	$\begin{gathered} \text { Bits 0-3 } \\ \text { Value (Hex) } \end{gathered}$	Number Added to Byte	Carry After DA
	0	0-9	0	0-9	00	0
	0	0-8	0	A-F	06	0
	0	0-9	1	0-3	06	0
ADD	0	A-F	0	0-9	60	1
ADC	0	9-F	0	A-F	66	1
	0	A-F	1	0-3	66	1
	1	0-2	0	0-9	60	1
	1	0-2	0	A-F	66	1
	1	0-3	1	0-3	66	1
	0	0-9	0	0-9	$00=-00$	0
SUB	0	0-8	1	6-F	$F A=-06$	0
SBC	1	7-F	0	0-9	$A 0=-60$	1
	1	6-F	1	6-F	$9 \mathrm{~A}=-66$	1

Flags:
C: Set if there was a carry from the most significant bit; cleared otherwise (see table).
Z: Set if result is " 0 "; cleared otherwise.
S: Set if result bit 7 is set; cleared otherwise.
V: Undefined.
D: Unaffected.
H: Unaffected.

Format:

Cycles
Opcode (Hex)

opc	dst

Bytes

2

40
41

Addr Mode
dst

R
IR

DA — Decimal Adjust

DA (Continued)
Example: Given: The working register R0 contains the value 15 (BCD), the working register R1 contains 27 (BCD), and the address 27 H contains 46 (BCD):

DA
R1
$\mathrm{R} 1 \leftarrow 3 \mathrm{CH}+06$

If an addition is performed using the BCD values 15 and 27, the result should be 42 . The sum is incorrect, however, when the binary representations are added in the destination location using the standard binary arithmetic:

$$
\begin{array}{r}
0001 \\
+0010 \\
+0111
\end{array} \quad \begin{aligned}
& 15 \\
& \hline 0011 \\
& 27100
\end{aligned}=\quad 3 \mathrm{CH}
$$

The DA instruction adjusts this result so that the correct BCD representation is obtained:

```
        0011 1100
+ 0000 0110
        0100 0010=42
```

Assuming the same values given above, the statements

SUB	$27 \mathrm{H}, \mathrm{R0}$	$;$	$\mathrm{C} \leftarrow " 0 ", \mathrm{H} \leftarrow " 0 "$, Bits $4-7=3$, bits $0-3=1$
DA	$@ R 1$	$@ R 1 \leftarrow 31-0$	

leave the value 31 (BCD) in the address 27H (@R1).

DEC - Decrement

DEC dst
Operation: dst \leftarrow dst-1
The contents of the destination operand are decremented by one.
Flags: C: Unaffected.
Z: Set if the result is " 0 "; cleared otherwise.
S: Set if result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred; cleared otherwise.
D: Unaffected.
H: Unaffected.

Format:

| | Bytes | Cycles | Opcode
 (Hex) | Addr Mode
 dst | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| opc | dst | 2 | 4 | 00 | R |

Examples: Given: R1 $=03 \mathrm{H}$ and register $03 \mathrm{H}=10 \mathrm{H}$:

DEC	R1	\rightarrow	$R 1=02 \mathrm{H}$
DEC	$@ R 1$	\rightarrow	Register $03 \mathrm{H}=0 \mathrm{FH}$

In the first example, if the working register R1 contains the value 03 H , the statement "DEC R1" decrements the hexadecimal value by one, leaving the value 02 H . In the second example, the statement "DEC @R1" decrements the value 10H contained in the destination register 03H by one, leaving the value 0 FH .

DECW - Decrement Word

DECW dst
Operation: \quad dst $\leftarrow d s t-1$
The contents of the destination location (which must be an even address) and the operand following that location are treated as a single 16-bit value that is decremented by one.

Flags: C: Unaffected.
Z: Set if the result is " 0 "; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred; cleared otherwise.
D: Unaffected.
H: Unaffected.

Format:

		Bytes	Cycles	Opcode (Hex)	Addr Mode dst
opc	dst	2	8	80	RR
			8	81	IR

Examples: Given: R0 $=12 \mathrm{H}, \mathrm{R} 1=34 \mathrm{H}, \mathrm{R} 2=30 \mathrm{H}$, register $30 \mathrm{H}=0 \mathrm{FH}$, and register $31 \mathrm{H}=21 \mathrm{H}$:

DECW	RR0	\rightarrow	$R 0=12 H, R 1=33 H$
DECW	$@ R 2$	\rightarrow	Register $30 \mathrm{H}=0 \mathrm{FH}$, register $31 \mathrm{H}=20 \mathrm{H}$

In the first example, the destination register R0 contains the value 12 H and the register R 1 the value 34 H . The statement "DECW RR0" addresses R0 and the following operand R1 as a 16-bit word and decrements the value of R1 by one, leaving the value 33 H .

NOTE: A system malfunction may occur if you use a Zero flag (FLAGS.6) result together with a DECW instruction. To avoid this problem, it is recommended to use DECW as shown in the following example.

LOOP	DECW	RR0
LD	R2,R1	
OR	R2,R0	
JR	NZ,LOOP	

DI - Disable Interrupts

DI
Operation:
SYM $(0) \leftarrow 0$
Bit zero of the system mode control register, SYM.0, is cleared to "0", globally disabling all interrupt processing. Interrupt requests will continue to set their respective interrupt pending bits, but the CPU will not service them while interrupt processing is disabled.

Flags: \quad No flags are affected.

Format:

Bytes	Cycles	Opcode (Hex)
1	4	8 F

Example: \quad Given: $S Y M=01 \mathrm{H}$:
DI
If the value of the SYM register is 01 H , the statement "DI" leaves the new value 00 H in the register and clears SYM. 0 to "0", disabling interrupt processing.

DIV — Divide (Unsigned)

DIV dst,src
Operation: dst \div src
dst (UPPER) \leftarrow REMAINDER
dst (LOWER) \leftarrow QUOTIENT
The destination operand (16 bits) is divided by the source operand (8 bits). The quotient (8 bits) is stored in the lower half of the destination. The remainder (8 bits) is stored in the upper half of the destination. When the quotient is ≥ 28, the numbers stored in the upper and lower halves of the destination for quotient and remainder are incorrect. Both operands are treated as unsigned integers.

Flags: $\quad \mathbf{C}:$ Set if the V flag is set and the quotient is between 28 and $29-1$; cleared otherwise.
Z: Set if the divisor or the quotient $=$ " 0 "; cleared otherwise.
S: Set if MSB of the quotient = "1"; cleared otherwise.
V: Set if the quotient is ≥ 28 or if the divisor $=$ " 0 "; cleared otherwise.
D: Unaffected.
H: Unaffected.

Format:

opc	src	dst

Bytes	Cycles	Opcode	Addr Mode	
3	$26 / 10^{*}$	94	RR	R
	$26 / 10^{*}$	95	$R R$	IR
	$26 / 10^{*}$	96	RR	IM

* Execution takes 10 cycles if the divide-by-zero is attempted, otherwise, it takes 26 cycles.

Examples: Given: $R 0=10 \mathrm{H}, \mathrm{R} 1=03 \mathrm{H}, \mathrm{R} 2=40 \mathrm{H}$, register $40 \mathrm{H}=80 \mathrm{H}$:
DIV RR0,R2 $\quad \rightarrow \quad$ R0 $=03 \mathrm{H}, \mathrm{R} 1=40 \mathrm{H}$
DIV RR0,@R2 $\rightarrow \quad$ R0 $=03 \mathrm{H}, \mathrm{R} 1=20 \mathrm{H}$
DIV RR0,\#20H $\rightarrow \quad$ R0 $=03 \mathrm{H}, \mathrm{R1}=80 \mathrm{H}$
In the first example, the destination working register pair RRO contains the values 10 H (R0) and 03 H (R1), and the register R2 contains the value 40 H . The statement "DIV RR0,R2" divides the 16-bit RR0 value by the 8 -bit value of the R2 (source) register. After the DIV instruction, R0 contains the value 03 H and R 1 contains 40 H . The 8 -bit remainder is stored in the upper half of the destination register RR0 (R0) and the quotient in the lower half (R1).

DJNZ - Decrement and Jump if Non-Zero

DJNZ r,dst
Operation: $\quad r \leftarrow r-1$ If $r \neq 0, P C \leftarrow P C+d s t$

The working register being used as a counter is decremented. If the contents of the register are not logic zero after decrementing, the relative address is added to the program counter and control passes to the statement whose address is now in the PC. The range of the relative address is + 127 to -128 , and the original value of the PC is taken to be the address of the instruction byte following the DJNZ statement.

NOTE: In case of using DJNZ instruction, the working register being used as a counter should be set at the one of location 0COH to 0CFH with SRP, SRP0 or SRP1 instruction.

Flags: \quad No flags are affected.

Format:

	Bytes	Cycles	Opcode (Hex)	Addr Mode dst	
$r \mid$ opc	dst	2	8 (jump taken)	rA	RA

Example: Given: $\mathrm{R} 1=02 \mathrm{H}$ and LOOP is the label of a relative address:
SRP \#OCOH
DJNZ R1,LOOP
DJNZ is typically used to control a "loop" of instructions. In many cases, a label is used as the destination operand instead of a numeric relative address value. In the example, the working register R1 contains the value 02 H , and LOOP is the label for a relative address.

The statement "DJNZ R1, LOOP" decrements the register R1 by one, leaving the value 01 H . Because the contents of R1 after the decrement are non-zero, the jump is taken to the relative address specified by the LOOP label.

EI - Enable Interrupts

El
Operation: \quad SYM $(0) \leftarrow 1$
The El instruction sets bit zero of the system mode register, SYM. 0 to "1". This allows interrupts to be serviced as they occur (assuming they have the highest priority). If an interrupt's pending bit was set while interrupt processing was disabled (by executing a DI instruction), it will be serviced when the El instruction is executed.

Flags: \quad No flags are affected.
Format:

If the SYM register contains the value 00 H , that is, if interrupts are currently disabled, the statement "EI" sets the SYM register to 01 H , enabling all interrupts. (SYM. 0 is the enable bit for global interrupt processing.)

ENTER - Enter

ENTER

Operation: $\quad \mathrm{SP} \leftarrow \mathrm{SP}-2$
$@ S P \leftarrow I P$
$I P \leftarrow P C$
$\mathrm{PC} \leftarrow$ @IP
$\mathrm{IP} \leftarrow \mathrm{IP}+2$
This instruction is useful when implementing threaded-code languages. The contents of the instruction pointer are pushed to the stack. The program counter (PC) value is then written to the instruction pointer. The program memory word that is pointed to by the instruction pointer is loaded into the PC, and the instruction pointer is incremented by two.

Flags: \quad No flags are affected.

Format:

$c \mid$	Bytes	Cycles	Opcode (Hex)
opc	1	14	1 F

Example: The diagram below shows an example of how to use an ENTER statement.

EXIT-Exit

EXIT

Operation: $\quad \mathrm{P} \leftarrow$ @SP
$S P \leftarrow S P+2$
$P C \leftarrow$ @IP
$\mathrm{IP} \leftarrow \mathrm{IP}+2$
This instruction is useful when implementing threaded-code languages. The stack value is popped and loaded into the instruction pointer. The program memory word that is pointed to by the instruction pointer is then loaded into the program counter, and the instruction pointer is incremented by two.

Flags: \quad No flags are affected.

Format:

	Bytes	Cycles	Opcode (Hex)
opc	1	16	$2 F$

Example: The diagram below shows an example of how to use an EXIT statement.

IDLE - Idle Operation

IDLE
Operation: (See description)
The IDLE instruction stops the CPU clock while allowing the system clock oscillation to continue. Idle mode can be released by an interrupt request (IRQ) or an external reset operation.

Flags: \quad No flags are affected.

Format:

	Bytes	Cycles	Opcode (Hex)	Addr Mode dst	$\underline{\text { src }}$

Example: The instruction IDLE stops the CPU clock but it does not stop the system clock.

INC - Increment

INC dst
Operation: \quad dst \leftarrow dst +1
The contents of the destination operand are incremented by one.
Flags: C: Unaffected.
Z: Set if the result is " 0 "; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred; cleared otherwise.
D: Unaffected.
H: Unaffected.

Format:

		Bytes	Cycles	Opcode (Hex)	Addr Mode dst
dst \| opc		1	4	rE	r
				$r=0$ to F	
opc	dst	2	4	20	R
			4	21	IR

Examples: Given: $R 0=1 \mathrm{BH}$, register $00 \mathrm{H}=0 \mathrm{CH}$, and register $1 \mathrm{BH}=0 \mathrm{FH}$:
INC R0 \rightarrow RO $=1 \mathrm{CH}$
INC 00H \rightarrow Register 00H $=0 \mathrm{DH}$
INC @R0 \rightarrow R0 $=1 \mathrm{BH}$, register $01 \mathrm{H}=10 \mathrm{H}$
In the first example, if the destination working register R0 contains the value 1 BH , the statement "INC R0" leaves the value 1CH in that same register.

The second example shows the effect an INC instruction has on the register at the location 00 H , assuming that it contains the value 0 CH .

In the third example, INC is used in Indirect Register (IR) addressing mode to increment the value of the register 1 BH from 0 FH to 10 H .

INCW - Increment Word

INCW dst
Operation: \quad dst \leftarrow dst +1
The contents of the destination (which must be an even address) and the byte following that location are treated as a single 16-bit value that is incremented by one.

Flags: C: Unaffected.
Z: Set if the result is " 0 "; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred; cleared otherwise.
D: Unaffected.
H: Unaffected.

Format:

| | Bytes | Cycles | Opcode
 (Hex) | Addr Mode
 dst | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| opc | dst | 2 | 8 | A 0 | RR |

Examples: Given: $R 0=1 \mathrm{AH}, \mathrm{R1}=02 \mathrm{H}$, register $02 \mathrm{H}=0 \mathrm{FH}$, and register $03 \mathrm{H}=0 \mathrm{FFH}$:

INCW	RR0	\rightarrow	$R 0=1 A H, R 1=03 H$
INCW	@R1	\rightarrow	Register $02 \mathrm{H}=10 \mathrm{H}$, register $03 \mathrm{H}=00 \mathrm{H}$

In the first example, the working register pair RR0 contains the value $1 A H$ in the register R0 and $02 H$ in the register R1. The statement "INCW RR0" increments the 16-bit destination by one, leaving the value 03 H in the register R1. In the second example, the statement "INCW @R1" uses Indirect Register (IR) addressing mode to increment the contents of the general register 03H from 0FFH to 00 H and the register 02 H from 0 FH to 10 H .

NOTE: A system malfunction may occur if you use a Zero (Z) flag (FLAGS.6) result together with an INCW instruction. To avoid this problem, it is recommended to use the INCW instruction as shown in the following example:

LOOP:	INCW	RR0
	LD	R2,R1
	OR	R2,R0
	JR	NZ,LOOP

SMMSUNH

IRET - Interrupt Return

IRET	IRET (Normal)	RET (Fast)
Operation $:$	FLAGS $\leftarrow @ S P$	PC $\leftrightarrow \mathbb{I P}$
	$\mathrm{SP} \leftarrow \mathrm{SP}+1$	FLAGS \leftarrow FLAGS'
	$\mathrm{PC} \leftarrow @ S P$	FIS $\leftarrow 0$
	$\mathrm{SP} \leftarrow \mathrm{SP}+2$	

This instruction is used at the end of an interrupt service routine. It restores the flag register and the program counter. It also re-enables global interrupts. A "normal IRET" is executed only if the fast interrupt status bit (FIS, bit one of the FLAGS register, 0D5H) is cleared (= "0"). If a fast interrupt occurred, IRET clears the FIS bit that was set at the beginning of the service routine.

Flags: \quad All flags are restored to their original settings (that is, the settings before the interrupt occurred).

Format:

IRET (Normal)	Bytes	Cycles	Opcode (Hex)
opc	1	12	BF
IRET (Fast)	Bytes	Cycles	Opcode (Hex)
opc	1	6	BF

Example: In the figure below, the instruction pointer is initially loaded with 100 H in the main program before interrupt are enabled. When an interrupt occurs, the program counter and the instruction pointer are swapped. This causes the PC to jump to the address 100 H and the IP to keep the return address. The last instruction in the service routine is normally a jump to IRET at the address FFH.
This loads the instruction pointer with 100 H "again" and causes the program counter to jump back to the main program. Now, the next interrupt can occur and the IP is still correct at 100 H .

NOTE: In the fast interrupt example above, if the last instruction is not a jump to IRET, you must pay attention to the order of the last tow instruction. The IRET cannot be immediately proceeded by an instruction which clears the interrupt status (as with a reset of the IPR register).

JP - Jump

JP cc,dst (Conditional)

JP dst (Unconditional)
Operation: If cc is true, PC $\leftarrow d s t$
The conditional JUMP instruction transfers program control to the destination address if the condition specified by the condition code (cc) is true, otherwise, the instruction following the JP instruction is executed. The unconditional JP simply replaces the contents of the PC with the contents of the specified register pair. Control then passes to the statement addressed by the PC.

Flags: \quad No flags are affected.
Format: (1)

NOTES:

1. The 3-byte format is used for a conditional jump and the 2-byte format for an unconditional jump.
2. In the first byte of the 3-byte instruction format (conditional jump), the condition code and the OPCODE are both four bits.

Examples: Given: The carry flag $(\mathrm{C})=" 1 "$, register $00=01 \mathrm{H}$, and register $01=20 \mathrm{H}$:Secs
JP C,LABEL_W
\rightarrow
LABEL_W $=1000 \mathrm{H}, \mathrm{PC}=1000 \mathrm{H}$
$J P$ @00H $\quad \rightarrow \quad P C=0120 \mathrm{H}$

The first example shows a conditional JP. Assuming that the carry flag is set to "1", the statement "JP C,LABEL_W" replaces the contents of the PC with the value 1000 H and transfers control to that location. Had the carry flag not been set, control would then have passed to the statement immediately following the JP instruction.

The second example shows an unconditional JP. The statement "JP @00" replaces the contents of the PC with the contents of the register pair 00 H and 01 H , leaving the value 0120 H .

SNMSUNF

JR - Jump Relative

JR cc,dst
Operation: If cc is true, $\mathrm{PC} \leftarrow \mathrm{PC}+$ dst
If the condition specified by the condition code (cc) is true, the relative address is added to the program counter and control passes to the statement whose address is now in the program counter, otherwise, the instruction following the JR instruction is executed. (See the list of condition codes at the beginning of this chapter).

The range of the relative address is $+127,-128$, and the original value of the program counter is taken to be the address of the first instruction byte following the JR statement.

Flags: \quad No flags are affected.
Format:

(note)		Bytes	Cycles	Opcode (Hex)	Addr Mode dst	
$\mathrm{cc} \mid \mathrm{opc}$	dst		2	6	ccB	RA

NOTE: In the first byte of the two-byte instruction format, the condition code and the opcode are each four bits in length.

Example: Given: The carry flag $=$ " 1 " and LABEL_X = 1FF7H:
JR C,LABEL_X $\quad \rightarrow \quad P C=1 F F 7 H$
If the carry flag is set (that is, if the condition code is "true"), the statement "JR C,LABEL_X" will pass control to the statement whose address is currently in the program counter. Otherwise, the program instruction following the JR will be executed.

LD - Load

LD dst,src
Operation: \quad dst \leftarrow src
The contents of the source are loaded into the destination. The source's contents are unaffected.
Flags: \quad No flags are affected.

Format:

LD - Load

LD
(Continued)
Examples: Given: R0 $=01 \mathrm{H}, \mathrm{R1}=0 \mathrm{AH}$, register $00 \mathrm{H}=01 \mathrm{H}$, register $01 \mathrm{H}=20 \mathrm{H}$, register $02 \mathrm{H}=02 \mathrm{H}, \mathrm{LOOP}=30 \mathrm{H}$, and register $3 \mathrm{AH}=0 \mathrm{FFH}$:

LD R0,\#10H	\rightarrow	$\mathrm{RO}=10 \mathrm{H}$
LD R0,01H	\rightarrow	R0 $=20 \mathrm{H}$, register 01H $=20 \mathrm{H}$
LD 01H,R0	\rightarrow	Register 01H $=01 \mathrm{H}, \mathrm{R0} 0=01 \mathrm{H}$
LD R1,@R0	\rightarrow	$\mathrm{R} 1=20 \mathrm{H}, \mathrm{RO}=01 \mathrm{H}$
LD @R0,R1	\rightarrow	R0 $=01 \mathrm{H}, \mathrm{R} 1=0 \mathrm{AH}$, register 01H $=0 \mathrm{AH}$
LD 00H,01H	\rightarrow	Register $00 \mathrm{H}=20 \mathrm{H}$, register $01 \mathrm{H}=20 \mathrm{H}$
LD 02H,@00H	\rightarrow	Register $02 \mathrm{H}=20 \mathrm{H}$, register $00 \mathrm{H}=01 \mathrm{H}$
LD 00H,\#OAH	\rightarrow	Register $00 \mathrm{H}=0 \mathrm{AH}$
LD @00H,\#10H \rightarrow		$0 \mathrm{H}=01 \mathrm{H}$, register $01 \mathrm{H}=10 \mathrm{H}$
LD @00H,02H	\rightarrow	Register $00 \mathrm{H}=01 \mathrm{H}$, register $01 \mathrm{H}=02$, register $02 \mathrm{H}=02 \mathrm{H}$
LD R0,\#LOOP[R1]	\rightarrow	R0 $=0 F F H, \mathrm{R} 1=0 \mathrm{AH}$
LD \#LOOP[R0],R1	\rightarrow	Register 31H $=0 \mathrm{AH}, \mathrm{RO}=01 \mathrm{H}, \mathrm{R} 1=0 \mathrm{AH}$

LDB — Load Bit

LDB	dst,src.b
LDB	dst.b,src
Operation:	$\operatorname{dst}(0) \leftarrow \operatorname{src}(b)$
	or
	$\operatorname{dst}(b) \leftarrow \operatorname{src}(0)$

The specified bit of the source is loaded into bit zero (LSB) of the destination, or bit zero of the source is loaded into the specified bit of the destination. No other bits of the destination are affected. The source is unaffected.

Flags: \quad No flags are affected.

Format:

			Bytes	Cycles	Opcode (Hex)	Addr Mode	
opc	dst $\|\mathrm{b}\| 0$	src	3	6	47	r0	Rb
opc	src \| $\mathrm{b} \mid 1$	dst	3	6	47	Rb	r0

NOTE: In the second byte of the instruction format, the destination (or the source) address is four bits, the bit address " b " is three bits, and the LSB address value is one bit in length.

Examples: Given: $\mathrm{RO}=06 \mathrm{H}$ and general register $00 \mathrm{H}=05 \mathrm{H}$:

$$
\begin{array}{llll}
\text { LDB } & \text { R0,00H. } 2 & \rightarrow & \text { R0 }=07 \mathrm{H}, \text { register } 00 \mathrm{H}=05 \mathrm{H} \\
\text { LDB } & 00 \mathrm{H} .0, \mathrm{RO} & \rightarrow & \mathrm{RO}=06 \mathrm{H}, \text { register } 00 \mathrm{H}=04 \mathrm{H}
\end{array}
$$

In the first example, the destination working register R0 contains the value 06 H and the source general register 00 H the value 05 H . The statement "LD R0,00H.2" loads the bit two value of the 00 H register into bit zero of the R0 register, leaving the value 07 H in the register R0.

In the second example, 00 H is the destination register. The statement "LD 00H.0,RO" loads bit zero of the register R0 to the specified bit (bit zero) of the destination register, leaving 04 H in the general register 00 H .

LDC/LDE - Load Memory

LDC	dst,src
LDE	dst,src
Operation:	dst \leftarrow src

This instruction loads a byte from program or data memory into a working register or vice-versa. The source values are unaffected. LDC refers to program memory and LDE to data memory. The assembler makes "lrr" or "rr" values an even number for program memory and an odd number for data memory.

Flags: \quad No flags are affected.

Format:

					Bytes	Cycles	Opcode (Hex)	Addr dst	Mode srC	
1.	opc	dst \| src			2	10	C3	r	Irr	
2.	opc	src \| dst			2	10	D3	Irr	r	
3.	opc	dst \| src	XS		3	12	E7	r	XS [rr]	
4.	opc	src \| dst	XS		3	12	F7	XS [rr]	r	
5.	opc	dst \\| src	XL_{L}	XL_{H}	4	14	A7	r	XL [rr]	
6.	opc	src \| dst	XL_{L}	XL_{H}	4	14	B7	XL [rr]	r	
7.	OpC	dst \| 0000	DA_{L}	DA_{H}	4	14	A7	r	DA	
8.	opc	src \| 0000	DA_{L}	DA_{H}	4	14	B7	DA	r	
9.	opc	dst \| 0001	DA ${ }_{\text {L }}$	DA_{H}	4	14	A7	r	DA	
10.	opc	src \| 0001	DA ${ }_{\text {L }}$	DA_{H}	4	14	B7	DA	r	

NOTES:

1. The source (src) or the working register pair [rr] for formats 5 and 6 cannot use the register pair $0-1$.
2. For the formats 3 and 4, the destination "XS [rr]" and the source address "XS [rr]" are both one byte.
3. For the formats 5 and 6 , the destination " $\mathrm{XL}[\mathrm{rr}]$ and the source address " $\mathrm{XL}[\mathrm{rr}]$ " are both two bytes.
4. The DA and the r source values for the formats 7 and 8 are used to address program memory. The second set of values, used in the formats 9 and 10, are used to address data memory.
5. LDE instruction can be used to read/write the data of 64-Kbyte data memory.

LDC/LDE - Load Memory

LDC/LDE	(Continued)		
Examples:	$0103 \mathrm{H}=4 \mathrm{FH}, 0104 \mathrm{H}=1 \mathrm{~A}, 0105 \mathrm{H}=6 \mathrm{DH}, \text { and } 1104 \mathrm{H}=88 \mathrm{H}$ External data memory locations		
	$0103 \mathrm{H}=5 \mathrm{FH}, 0104 \mathrm{H}=2 \mathrm{AH}, 0105 \mathrm{H}=7 \mathrm{DH}$, and $1104 \mathrm{H}=98 \mathrm{H}$:		
	LDC	R0,@RR2	R0 \leftarrow contents of program memory location 0104H; $R 0=1 A H, R 2=01 H, R 3=04 H$
	LDE	R0,@RR2	$\begin{aligned} & \mathrm{R} 0 \leftarrow \text { contents of external data memory location } \\ & \text { R0 }=2 \mathrm{AH}, \mathrm{R} 2=01 \mathrm{H} ; \mathrm{R} 3=04 \mathrm{H} \end{aligned}$
	LDC	@RR2,R0	11 H (contents of R0) is loaded into program memory location 0104H (RR2); R0, R2, R3 \rightarrow no change
	LDE	@RR2,R0	11 H (contents of R0) is loaded into external data memory location 0104H (RR2); R0, R2, R3 \rightarrow no change
	LDC	R0,\#01H[RR2]	R0 \leftarrow contents of program memory location 0105 H $(01 \mathrm{H}+\mathrm{RR} 2) ; \mathrm{R} 0=6 \mathrm{DH}, \mathrm{R} 2=01 \mathrm{H}, \mathrm{R} 3=04 \mathrm{H}$
	LDE	R0,\#01H[RR2]	RO \leftarrow contents of external data memory location 0105H
	LDC	\#01H[RR2],R0	11 H (contents of R0) is loaded into program memory location $0105 \mathrm{H}(01 \mathrm{H}+0104 \mathrm{H})$
	LDE	\#01H[RR2],R0	11 H (contents of R0) is loaded into external data memory location $0105 \mathrm{H}(01 \mathrm{H}+0104 \mathrm{H})$
	LDC	R0,\#1000H[RR2]	R0 \leftarrow contents of program memory location 1104 H $(1000 \mathrm{H}+0104 \mathrm{H}) ; \mathrm{RO}=88 \mathrm{H}, \mathrm{R} 2=01 \mathrm{H}, \mathrm{R} 3=04 \mathrm{H}$
	LDE	R0,\#1000H[RR2]	$\begin{aligned} & \text { R0 } \leftarrow \text { contents of external data memory location } \\ & (1104 \mathrm{H} \\ & (1000 \mathrm{H}+0104 \mathrm{H}) ; \mathrm{RO}=98 \mathrm{H}, \mathrm{R} 2=01 \mathrm{H}, \mathrm{R} 3=04 \mathrm{H} \end{aligned}$
	LDC	R0,1104H	$\mathrm{RO} \leftarrow$ contents of program memory location 1104 H $\mathrm{RO}=88 \mathrm{H}$
	LDE	R0,1104H	$\begin{aligned} & \text { R0 } \leftarrow \text { contents of external data memory location } \\ & 1104 \mathrm{H} \text {; } \end{aligned}$
	LDC	1105H,R0	11 H (contents of RO) is loaded into program memory location $1105 \mathrm{H} ;(1105 \mathrm{H}) \leftarrow 11 \mathrm{H}$
	LDE	1105H,R0	11 H (contents of R0) is loaded into external data memory location $1105 \mathrm{H} ;(1105 \mathrm{H}) \leftarrow 11 \mathrm{H}$

NOTE: The LDC and the LDE instructions are not supported by masked ROM type devices.

Snmsunti

LDCD/LDED - Load Memory and Decrement

LDCD	dst,src
LDED	dst,src
Operation:	$\mathrm{dst} \leftarrow \mathrm{src}$
	$\mathrm{rr} \leftarrow \mathrm{rr}-1$

These instructions are used for user stacks or block transfers of data from program or data memory to the register file. The address of the memory location is specified by a working register pair. The contents of the source location are loaded into the destination location. The memory address is then decremented. The contents of the source are unaffected.

LDCD refers to program memory and LDED refers to external data memory. The assembler makes "Irr" an even number for program memory and an odd number for data memory.

Flags: \quad No flags are affected.

Format:

c	Bytes	Cycles	Opcode (Hex)	Addr Mode dst	$\underline{\text { src }}$

Examples: Given: R6 $=10 \mathrm{H}, \mathrm{R} 7=33 \mathrm{H}, \mathrm{R} 8=12 \mathrm{H}$, program memory location $1033 \mathrm{H}=0 \mathrm{CDH}$, and external data memory location $1033 \mathrm{H}=0 \mathrm{DDH}$:

LDCD R8,@RR6 ; 0CDH (contents of program memory location 1033H) is loaded
; into R8 and RR6 is decremented by one;
; $\mathrm{R} 8=0 \mathrm{CDH}, \mathrm{R} 6=10 \mathrm{H}, \mathrm{R} 7=32 \mathrm{H}(\mathrm{RR} 6 \leftarrow \mathrm{RR} 6-1)$
LDED R8,@RR6 ; 0DDH (contents of data memory location 1033H) is loaded
; into R8 and RR6 is decremented by one (RR6 \leftarrow RR6 - 1);
; R8 = 0DDH, R6 = $10 \mathrm{H}, \mathrm{R} 7=32 \mathrm{H}$

NOTE: LDED instruction can be used to read/write the data of 64-Kbyte data memory.

LDCI/LDEI - Load Memory and Increment

LDCI	dst,src
LDEI	dst,src
Operation:	dst $\leftarrow \mathrm{src}$
	$\mathrm{rr} \leftarrow \mathrm{rr}+$

These instructions are used for user stacks or block transfers of data from program or data memory to the register file. The address of the memory location is specified by a working register pair. The contents of the source location are loaded into the destination location. The memory address is then incremented automatically. The contents of the source are unaffected.
LDCI refers to program memory and LDEI refers to external data memory. The assembler makes "lrr" an even number for program memory and an odd number for data memory.

Flags: \quad No flags are affected.

Format:

| | Bytes | Cycles | Opcode
 (Hex) | Addr Mode
 dst | $\underline{\text { src }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Examples: Given: R6 $=10 \mathrm{H}, \mathrm{R} 7=33 \mathrm{H}, \mathrm{R} 8=12 \mathrm{H}$, program memory locations $1033 \mathrm{H}=0 \mathrm{CDH}$ and $1034 \mathrm{H}=0 \mathrm{C} 5 \mathrm{H}$; external data memory locations $1033 \mathrm{H}=0 \mathrm{DDH}$ and $1034 \mathrm{H}=0 \mathrm{D} 5 \mathrm{H}$:

LDCI	R8,@RR6	0 CDH (contents of program memory location 1033 H) is loaded into R8 and RR6 is incremented by one $\begin{aligned} & (R R 6 \leftarrow R R 6+1) ; \\ & R 8=0 C D H, R 6=10 H, R 7=34 H \end{aligned}$
LDEI	R8,@RR6	ODDH (contents of data memory location 1033 H) is loaded into R8 and RR6 is incremented by one $\begin{aligned} & (R R 6 \leftarrow R R 6+1) \\ & R 8=0 D D H, R 6=10 H, R 7=34 H \end{aligned}$

NOTE: LDEI instruction can be used to read/write the data of 64-Kbyte data memory.

LDCPD/LDEPD - Load Memory with Pre-Decrement

LDCPD	$d s t, s r c$
LDEPD	$d s t, s r c$

Operation: $\quad \mathrm{rr} \leftarrow \mathrm{rr}-1$
dst \leftarrow src
These instructions are used for block transfers of data from program or data memory to the register file. The address of the memory location is specified by a working register pair and is first decremented. The contents of the source location are then loaded into the destination location. The contents of the source are unaffected.

LDCPD refers to program memory and LDEPD refers to external data memory. The assembler makes "Irr" an even number for program memory and an odd number for external data memory.

Flags: \quad No flags are affected.

Format:

	Bytes	Cycles	Opcode (Hex)	Addr Mode dst	$\underline{\text { src }}$

Examples: Given: $\mathrm{R} 0=77 \mathrm{H}, \mathrm{R} 6=30 \mathrm{H}$, and $\mathrm{R} 7=00 \mathrm{H}$:
LDCPD @RR6,R0 ; (RR6 \leftarrow RR6 - 1)
; 77H (the contents of R0) is loaded into program memory
; location 2FFFH $(3000 \mathrm{H}-1 \mathrm{H})$;
LDEPD @RR6,R0 ; $($ RR6 \leftarrow RR6 - 1)
; 77H (the contents of R0) is loaded into external data memory
; location 2FFFH $(3000 \mathrm{H}-1 \mathrm{H})$;

NOTE: LDEPD instruction can be used to read/write the data of 64-Kbyte data memory.

LDCPI/LDEPI — Load Memory with Pre-Increment

LDCPI	$d s t, s r c$
LDEPI	$d s t, s r c$

Operation: $\quad \mathrm{rr} \leftarrow \mathrm{rr}+1$
dst \leftarrow src
These instructions are used for block transfers of data from program or data memory to the register file. The address of the memory location is specified by a working register pair and is first incremented. The contents of the source location are loaded into the destination location. The contents of the source are unaffected.

LDCPI refers to program memory and LDEPI refers to external data memory. The assembler makes "Irr" an even number for program memory and an odd number for data memory.

Flags: \quad No flags are affected.

Format:

| | Bytes | Cycles | Opcode
 (Hex) | Addr Mode
 dst | $\underline{\text { src }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Examples: Given: R0 $=7 \mathrm{FH}, \mathrm{R} 6=21 \mathrm{H}$, and $\mathrm{R} 7=0 \mathrm{FFH}$:

LDCPI	@RR6,R0	(RR6 $\leftarrow \mathrm{bR}$
		7FH (the contents of R0) is loaded into program memory location $2200 \mathrm{H}(21 \mathrm{FFH}+1 \mathrm{H})$; $\mathrm{R0}=7 \mathrm{FH}, \mathrm{R6}=22 \mathrm{H}, \mathrm{R} 7=00 \mathrm{H}$
LDEPI	@RR6,R0	$(\mathrm{RR} 6 \leftarrow \mathrm{bRR} 6+1)$
		7FH (the contents of R0) is loaded into external data memory
		location $2200 \mathrm{H}(21 \mathrm{FFH}+1 \mathrm{H})$;
		$\mathrm{RO}=7 \mathrm{FH}, \mathrm{R6}=22 \mathrm{H}, \mathrm{R} 7=00 \mathrm{H}$

NOTE: LDEPI instruction can be used to read/write the data of 64-Kbyte data memory.

LDW - Load Word

LDW dst,src
Operation: dst \leftarrow src
The contents of the source (a word) are loaded into the destination. The contents of the source are unaffected.

Flags: \quad No flags are affected.
Format:

Examples: Given: R4 $=06 \mathrm{H}, \mathrm{R} 5=1 \mathrm{CH}, \mathrm{R} 6=05 \mathrm{H}, \mathrm{R} 7=02 \mathrm{H}$, register $00 \mathrm{H}=1 \mathrm{AH}$, register $01 \mathrm{H}=02 \mathrm{H}$, register $02 \mathrm{H}=03 \mathrm{H}$, and register $03 \mathrm{H}=0 \mathrm{FH}$

LDW	RR6,RR4	\rightarrow	$\mathrm{R6}=06 \mathrm{H}, \mathrm{R} 7=1 \mathrm{CH}, \mathrm{R} 4=06 \mathrm{H}, \mathrm{R} 5=1 \mathrm{CH}$
LDW	00H, 02 H	\rightarrow	$\begin{aligned} & \text { Register } 00 \mathrm{H}=03 \mathrm{H}, \text { register } 01 \mathrm{H}=0 \mathrm{FH}, \\ & \text { register } 02 \mathrm{H}=03 \mathrm{H} \text {, register } 03 \mathrm{H}=0 \mathrm{FH} \end{aligned}$
LDW	RR2,@R7	\rightarrow	$\mathrm{R} 2=03 \mathrm{H}, \mathrm{R} 3=0 \mathrm{FH}$,
LDW	04H,@01H	\rightarrow	Register 04H $=03 \mathrm{H}$, register $05 \mathrm{H}=0 \mathrm{FH}$
LDW	RR6,\#1234H	\rightarrow	$\mathrm{R6}=12 \mathrm{H}, \mathrm{R7}=34 \mathrm{H}$
LDW	02H,\#0FEDH	\rightarrow	Register $02 \mathrm{H}=0 \mathrm{FH}$, register $03 \mathrm{H}=0 \mathrm{EDH}$

In the second example, please note that the statement "LDW 00H, 02 H " loads the contents of the source word 02 H and 03 H into the destination word 00 H and 01 H . This leaves the value 03 H in the general register 00 H and the value 0 FH in the register 01 H .

Other examples show how to use the LDW instruction with various addressing modes and formats.

MULT — Multiply (Unsigned)

MULT dst,src
Operation: \quad dst \leftarrow dst \times src
The 8-bit destination operand (the even numbered register of the register pair) is multiplied by the source operand (8 bits) and the product (16 bits) is stored in the register pair specified by the destination address. Both operands are treated as unsigned integers.

Flags: \quad C: Set if the result is >255; cleared otherwise.
Z: Set if the result is " 0 "; cleared otherwise.
S: Set if MSB of the result is a "1"; cleared otherwise.
V: Cleared.
D: Unaffected.
H: Unaffected.

Format:

| | | | Bytes | Cycles | Opcode
 (Hex) | Addr Mode
 dst | $\underline{\text { src }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Examples: Given: Register $00 \mathrm{H}=20 \mathrm{H}$, register $01 \mathrm{H}=03 \mathrm{H}$, register $02 \mathrm{H}=09 \mathrm{H}$, register $03 \mathrm{H}=06 \mathrm{H}$:

MULT	$00 \mathrm{H}, 02 \mathrm{H}$	\rightarrow	Register $00 \mathrm{H}=01 \mathrm{H}$, register $01 \mathrm{H}=20 \mathrm{H}$, register $02 \mathrm{H}=09 \mathrm{H}$
MULT	$00 \mathrm{H}, @ 01 \mathrm{H}$	\rightarrow	Register $00 \mathrm{H}=00 \mathrm{H}$, register $01 \mathrm{H}=0 \mathrm{C} 0 \mathrm{H}$
MULT	$00 \mathrm{H}, \# 30 \mathrm{H}$	\rightarrow	Register $00 \mathrm{H}=06 \mathrm{H}$, register $01 \mathrm{H}=00 \mathrm{H}$

In the first example, the statement "MULT $00 \mathrm{H}, 02 \mathrm{H}$ " multiplies the 8 -bit destination operand (in the register 00 H of the register pair $00 \mathrm{H}, 01 \mathrm{H}$) by the source register 02 H operand $(09 \mathrm{H})$.
The 16 -bit product, 0120 H , is stored in the register pair $00 \mathrm{H}, 01 \mathrm{H}$.

NEXT - Next

NEXT

Operation: $\quad \mathrm{PC} \leftarrow$ @IP
$\mathrm{IP} \leftarrow \mathrm{IP}+2$
The NEXT instruction is useful when implementing threaded-code languages. The program memory word that is pointed to by the instruction pointer is loaded into the program counter. The instruction pointer is then incremented by two.

Flags: \quad No flags are affected.
Format:

	Bytes	Cycles	Opcode (Hex)
opc	1	10	OF

Example: The following diagram shows an example of how to use the NEXT instruction.

NOP - No Operation

NOP
Operation: No action is performed when the CPU executes this instruction. Typically, one or more NOPs are executed in sequence in order to affect a timing delay of variable duration.

Flags: \quad No flags are affected.
Format:

| | Bytes | Cycles | Opcode
 (Hex) |
| :---: | :---: | :---: | :---: | :---: |
| opc | 1 | 4 | FF |

Example: When the instruction NOP is executed in a program, no operation occurs. Instead, there happens a delay in instruction execution time which is of approximately one machine cycle per each NOP instruction encountered.

OR - Logical OR

OR dst,src
Operation: \quad dst \leftarrow dst OR src
The source operand is logically ORed with the destination operand and the result is stored in the destination. The contents of the source are unaffected. The OR operation results in a "1" being stored whenever either of the corresponding bits in the two operands is a "1", otherwise, a "0" is stored.

Flags: C: Unaffected.
Z: Set if the result is " 0 "; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Always cleared to "0".
D: Unaffected.
H: Unaffected.

Format:

Examples: Given: $\mathrm{R0}=15 \mathrm{H}, \mathrm{R} 1=2 \mathrm{AH}, \mathrm{R} 2=01 \mathrm{H}$, register $00 \mathrm{H}=08 \mathrm{H}$, register $01 \mathrm{H}=37 \mathrm{H}$, and register $08 \mathrm{H}=8 \mathrm{AH}$

OR	$R 0, R 1$	\rightarrow	$R 0=3 F H, R 1=2 A H$
OR	$R 0, @ R 2$	\rightarrow	$R 0=37 H, R 2=01 H$, register $01 \mathrm{H}=37 \mathrm{H}$
OR	$00 H, 01 H$	\rightarrow	Register $00 \mathrm{H}=3 F \mathrm{H}$, register $01 \mathrm{H}=37 \mathrm{H}$
OR	$01 \mathrm{H}, @ 00 \mathrm{H}$	\rightarrow	Register $00 \mathrm{H}=08 \mathrm{H}$, register $01 \mathrm{H}=0 \mathrm{BFH}$
OR	$00 \mathrm{H}, \# 02 \mathrm{H}$	\rightarrow	Register $00 \mathrm{H}=0 \mathrm{H}$

In the first example, if the working register R0 contains the value 15 H and the register R 1 the value 2AH, the statement "OR R0,R1" logical-ORs the R0 and R1 register contents and stores the result $(3 F H)$ in the destination register R0.

Other examples show the use of the logical OR instruction with various addressing modes and formats.

POP - Pop from Stack

POP dst
Operation: \quad dst \leftarrow @SP
$S P \leftarrow S P+1$
The contents of the location addressed by the stack pointer are loaded into the destination. The stack pointer is then incremented by one.

Flags: \quad No flags are affected.

Format:

									Bytes	Cycles	Opcode (Hex)	Addr Mode dst
opc	dst	2	8	50	R							

Examples: Given: Register $00 \mathrm{H}=01 \mathrm{H}$, register $01 \mathrm{H}=1 \mathrm{BH}, \mathrm{SPH}(0 \mathrm{D} 8 \mathrm{H})=00 \mathrm{H}, \mathrm{SPL}(0 \mathrm{D} 9 \mathrm{H})=0 \mathrm{FBH}$, and stack register $0 \mathrm{FBH}=55 \mathrm{H}$:

POP	00 H	\rightarrow	Register $00 \mathrm{H}=55 \mathrm{H}, \mathrm{SP}=00 \mathrm{FCH}$
POP	$@ 00 \mathrm{H}$	\rightarrow	Register $00 \mathrm{H}=01 \mathrm{H}$, register $01 \mathrm{H}=55 \mathrm{H}, \mathrm{SP}=00 \mathrm{FCH}$

In the first example, the general register 00 H contains the value 01 H . The statement "POP 00 H " loads the contents of the location 00FBH $(55 \mathrm{H})$ into the destination register 00 H and then increments the stack pointer by one. The register 00 H then contains the value 55 H and the SP points to the location 00FCH.

POPUD - Pop User Stack (Decrementing)

POPUD dst,src
Operation: \quad dst \leftarrow src $\mathrm{IR} \leftarrow \mathrm{IR}-1$

This instruction is used for user-defined stacks in the register file. The contents of the register file location addressed by the user stack pointer are loaded into the destination. The user stack pointer is then decremented.

Flags: \quad No flags are affected.

Format:

	Bytes	Cycles	Opcode (Hex)	Addr Mode dst	src		
opc	src	dst	3	8	92	R	IR

Example: Given: Register $00 \mathrm{H}=42 \mathrm{H}$ (user stack pointer register), register $42 \mathrm{H}=6 \mathrm{FH}$, and register $02 \mathrm{H}=70 \mathrm{H}$:

POPUD $02 \mathrm{H}, @ 00 \mathrm{H} \underset{\rightarrow}{\rightarrow} \quad$ Register $00 \mathrm{H}=41 \mathrm{H}$, register $02 \mathrm{H}=6 \mathrm{FH}$, register $42 \mathrm{H}=$ 6FH

02 H If the general register 00 H contains the value 42 H and the register 42 H the value 6 FH , the statement "POPUD 02H,@00H" loads the contents of the register 42 H into the destination register. The user stack pointer is then decremented by one, leaving the value 41 H .

POPUI — Pop User Stack (Incrementing)

POPUI dst,src
Operation: \quad dst \leftarrow src
$\mathrm{IR} \leftarrow \mathrm{IR}+1$
The POPUI instruction is used for user-defined stacks in the register file. The contents of the register file location addressed by the user stack pointer are loaded into the destination. The user stack pointer is then incremented.

Flags: \quad No flags are affected.

Format:

	Bytes	Cycles	Opcode (Hex)	Addr Mode dst	src		
opc	src	dst	3	8	93	R	IR

Example: Given: Register $00 \mathrm{H}=01 \mathrm{H}$ and register $01 \mathrm{H}=70 \mathrm{H}$:
POPUI $02 \mathrm{H}, @ 00 \mathrm{H} \rightarrow \quad$ Register $00 \mathrm{H}=02 \mathrm{H}$, register $01 \mathrm{H}=70 \mathrm{H}$, register $02 \mathrm{H}=$

If the general register 00 H contains the value 01 H and the register 01 H the value 70 H , the statement "POPUI 02H,@00H" loads the value 70 H into the destination general register 02 H . The user stack pointer (the register 00 H) is then incremented by one, changing its value from 01 H to 02 H .

PUSH — Push to Stack

PUSH SrC
Operation: $\quad \mathrm{SP} \leftarrow \mathrm{SP}-1$
$@$ SP \leftarrow src
A PUSH instruction decrements the stack pointer value and loads the contents of the source (src) into the location addressed by the decremented stack pointer. The operation then adds the new value to the top of the stack.

Flags: \quad No flags are affected.
Format:

Examples: Given: Register $40 \mathrm{H}=4 \mathrm{FH}$, register $4 \mathrm{FH}=0 \mathrm{AAH}, \mathrm{SPH}=00 \mathrm{H}$, and $\mathrm{SPL}=00 \mathrm{H}$:

PUSH 40 H	\rightarrow	Register $40 \mathrm{H}=4 \mathrm{FH}$, stack register 0FFH $=4 \mathrm{FH}$, $\mathrm{SPH}=0 \mathrm{FFH}, \mathrm{SPL}=0 \mathrm{FFH}$	
PUSH	$@ 40 \mathrm{H}$	\rightarrow	Register $40 \mathrm{H}=4 \mathrm{FH}$, register $4 \mathrm{FH}=0 \mathrm{AAH}$, stack register OFFH $=0 \mathrm{AAH}, \mathrm{SPH}=0 \mathrm{FFH}, \mathrm{SPL}=0 \mathrm{FFH}$

In the first example, if the stack pointer contains the value 0000 H , and the general register 40 H the value 4 FH , the statement "PUSH 40 H " decrements the stack pointer from 0000 to $0 F F F F H$. It then loads the contents of the register 40 H into the location OFFFFH and adds this new value to the top of the stack.

PUSHUD - Push User Stack (Decrementing)

PUSHUD dst,src
Operation: $\quad \mathrm{IR} \leftarrow \mathbb{R}-1$
dst \leftarrow src
This instruction is used to address user-defined stacks in the register file. PUSHUD decrements the user stack pointer and loads the contents of the source into the register addressed by the decremented stack pointer.

Flags: \quad No flags are affected.

Format:

	Bytes	Cycles	Opcode (Hex)	Addr Mode dst	src		
opc	dst	src	3	8	82	IR	R

Example: Given: Register $00 \mathrm{H}=03 \mathrm{H}$, register $01 \mathrm{H}=05 \mathrm{H}$, and register $02 \mathrm{H}=1 \mathrm{AH}$:
PUSHUD @00H,01H $\rightarrow \quad$ Register $00 \mathrm{H}=02 \mathrm{H}$, register $01 \mathrm{H}=05 \mathrm{H}$, register $02 \mathrm{H}=05 \mathrm{H}$

If the user stack pointer (the register 00 H , for example) contains the value 03 H , the statement "PUSHUD @00H, 01 H " decrements the user stack pointer by one, leaving the value 02 H .
The 01 H register value, 05 H , is then loaded into the register addressed by the decremented user stack pointer.

PUSHUI — Push User Stack (Incrementing)

PUSHUI dst,src
Operation: $\quad \mathrm{IR} \leftarrow \mathrm{IR}+1$
dst \leftarrow src
This instruction is used for user-defined stacks in the register file. PUSHUI increments the user stack pointer and then loads the contents of the source into the register location addressed by the incremented user stack pointer.

Flags: \quad No flags are affected.

Format:

	Bytes	Cycles	Opcode (Hex)	Addr Mode dst	src		
opc	dst	src	3	8	83	IR	R

Example: Given: Register $00 \mathrm{H}=03 \mathrm{H}$, register $01 \mathrm{H}=05 \mathrm{H}$, and register $04 \mathrm{H}=2 \mathrm{AH}$:

$$
\begin{array}{ll}
\text { PUSHUI @00H,01H } \rightarrow \quad \begin{array}{l}
\text { Register } 00 \mathrm{H}=04 \mathrm{H}, \text { register } 01 \mathrm{H}=05 \mathrm{H}, \\
\text { register } 04 \mathrm{H}=05 \mathrm{H}
\end{array}
\end{array}
$$

If the user stack pointer (the register 00 H , for example) contains the value 03 H , the statement "PUSHUI @00H, 01 H " increments the user stack pointer by one, leaving the value 04 H . The 01 H register value, 05 H , is then loaded into the location addressed by the incremented user stack pointer.

RCF - Reset Carry Flag

RCF RCF
Operation: $\quad C \leftarrow 0$
The carry flag is cleared to logic zero, regardless of its previous value.
Flags: \quad C: Cleared to "0".
No other flags are affected.
Format:

$c \mid$	Bytes	Cycles	Opcode (Hex)
opc	1	4	CF

Example: Given: $C=" 1 "$ or "0":
The instruction RCF clears the carry flag (C) to logic zero.

RET - Return

RET

Operation:
$\mathrm{PC} \leftarrow$ @SP
$S P \leftarrow S P+2$
The RET instruction is normally used to return to the previously executed procedure at the end of the procedure entered by a CALL instruction. The contents of the location addressed by the stack pointer are popped into the program counter. The next statement to be executed is the one that is addressed by the new program counter value.

Flags: \quad No flags are affected.

Format:

	Bytes	Cycles	Opcode (Hex)
opc	1	10	AF

Example: Given: $S P=00 F C H,(S P)=101 \mathrm{AH}$, and $P C=1234$:
RET $\rightarrow \quad \mathrm{PC}=101 \mathrm{AH}, \mathrm{SP}=00 \mathrm{FEH}$
The RET instruction pops the contents of the stack pointer location $00 \mathrm{FCH}(10 \mathrm{H})$ into the high byte of the program counter. The stack pointer then pops the value in the location 00FEH (1AH) into the PC's low byte and the instruction at the location 101 AH is executed. The stack pointer now points to the memory location 00FEH.

RL — Rotate Left

RL dst
Operation:
$C \leftarrow$ dst (7)
dst (0) \leftarrow dst (7)
dst $(\mathrm{n}+1) \leftarrow$ dst $(\mathrm{n}), \mathrm{n}=0-6$
The contents of the destination operand are rotated left one bit position. The initial value of bit 7 is moved to the bit zero (LSB) position and also replaces the carry flag, as shown in the figure below.

Flags: \quad C: Set if the bit rotated from the most significant bit position (bit 7) was "1".
Z: Set if the result is " 0 "; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Set if arithmetic overflow occurred; cleared otherwise.
D: Unaffected.
H: Unaffected.

Format:

| | Bytes | Cycles | Opcode
 (Hex) | Addr Mode
 dst | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| opc | dst | 2 | 4 | 90 | R |

Examples: Given: Register $00 \mathrm{H}=0 \mathrm{AAH}$, register $01 \mathrm{H}=02 \mathrm{H}$ and register $02 \mathrm{H}=17 \mathrm{H}$:

RL	00 H	\rightarrow	Register $00 \mathrm{H}=55 \mathrm{H}, \mathrm{C}=" 1 "$
RL	$@ 01 \mathrm{H}$	\rightarrow	Register $01 \mathrm{H}=02 \mathrm{H}$, register $02 \mathrm{H}=2 \mathrm{EH}, \mathrm{C}=" 0 "$

In the first example, if the general register 00H contains the value OAAH (10101010B), the statement "RL 00 H " rotates the 0 AAH value left one bit position, leaving the new value 55 H (01010101 B) and setting the carry (C) and the overflow (V) flags.

RLC - Rotate Left through Carry

RLC dst
Operation: \quad dst $(0) \leftarrow \mathrm{C}$
$C \leftarrow$ dst (7)
dst $(\mathrm{n}+1) \leftarrow$ dst $(\mathrm{n}), \mathrm{n}=0-6$
The contents of the destination operand with the carry flag are rotated left one bit position. The initial value of bit 7 replaces the carry flag (C), and the initial value of the carry flag replaces bit zero.

Flags: C: Set if the bit rotated from the most significant bit position (bit 7) was "1".
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Set if arithmetic overflow occurred, that is, if the sign of the destination is changed during the rotation; cleared otherwise.
D: Unaffected.
H: Unaffected.

Format:

								Bytes	Cycles	Opcode (Hex)	Addr Mode dst
opc	dst	2	4	10	R						

Examples: Given: Register $00 \mathrm{H}=0 \mathrm{AAH}$, register $01 \mathrm{H}=02 \mathrm{H}$, and register $02 \mathrm{H}=17 \mathrm{H}, \mathrm{C}=$ " 0 ":

RLC	00 H	\rightarrow	Register $00 \mathrm{H}=54 \mathrm{H}, \mathrm{C}=" 1 "$
RLC	$@ 01 \mathrm{H}$	\rightarrow	Register $01 \mathrm{H}=02 \mathrm{H}$, register $02 \mathrm{H}=2 \mathrm{EH}, \mathrm{C}=" 0 "$

In the first example, if the general register 00H has the value OAAH (10101010B), the statement "RLC 00 H " rotates 0 AAH one bit position to the left. The initial value of bit 7 sets the carry flag and the initial value of the C flag replaces bit zero of the register 00H, leaving the value 55H (01010101B). The MSB of the register 00 H resets the carry flag to " 1 " and sets the overflow flag.

RR - Rotate Right

RR dst
Operation:
$C \leftarrow$ dst (0)
dst (7) \leftarrow dst (0)
dst $(\mathrm{n}) \leftarrow$ dst $(\mathrm{n}+1), \mathrm{n}=0-6$
The contents of the destination operand are rotated right one bit position. The initial value of bit zero (LSB) is moved to bit 7 (MSB) and also replaces the carry flag (C).

Flags: $\quad \mathbf{C}:$ Set if the bit rotated from the least significant bit position (bit zero) was "1".
Z: Set if the result is " 0 "; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Set if arithmetic overflow occurred, that is, if the sign of the destination is changed during the rotation; cleared otherwise.

D: Unaffected.
H: Unaffected.

Format:

| | Bytes | Cycles | Opcode
 (Hex) | Addr Mode
 dst | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| opc | dst | 2 | 4 | E0 | R |

Examples: Given: Register $00 \mathrm{H}=31 \mathrm{H}$, register $01 \mathrm{H}=02 \mathrm{H}$, and register $02 \mathrm{H}=17 \mathrm{H}$:

RR	00 H	\rightarrow	Register $00 \mathrm{H}=98 \mathrm{H}, \mathrm{C}=" 1 "$
RR	$@ 01 \mathrm{H}$	\rightarrow	Register $01 \mathrm{H}=02 \mathrm{H}$, register $02 \mathrm{H}=8 \mathrm{BH}, \mathrm{C}=" 1 "$

In the first example, if the general register 00 H contains the value $31 \mathrm{H}(00110001 \mathrm{~B})$, the statement " RR 00 H " rotates this value one bit position to the right. The initial value of bit zero is moved to bit 7 , leaving the new value $98 \mathrm{H}(10011000 \mathrm{~B})$ in the destination register. The initial bit zero also resets the C flag to "1" and the sign flag and the overflow flag are also set to "1".

RRC - Rotate Right through Carry

RRC dst
Operation: \quad dst $(7) \leftarrow \mathrm{C}$
$C \leftarrow$ dst (0)
dst $(\mathrm{n}) \leftarrow$ dst $(\mathrm{n}+1), \mathrm{n}=0-6$
The contents of the destination operand and the carry flag are rotated right one bit position. The initial value of bit zero (LSB) replaces the carry flag, and the initial value of the carry flag replaces bit 7 (MSB).

Flags: \quad C: Set if the bit rotated from the least significant bit position (bit zero) was "1".
Z: Set if the result is " 0 " cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Set if arithmetic overflow occurred, that is, if the sign of the destination is changed during the rotation; cleared otherwise.

D: Unaffected.
H: Unaffected.

Format:

	Bytes	Cycles	Opcode (Hex)	Addr Mode dst		
opc	dst				CO	R

Examples: Given: Register $00 \mathrm{H}=55 \mathrm{H}$, register $01 \mathrm{H}=02 \mathrm{H}$, register $02 \mathrm{H}=17 \mathrm{H}$, and $\mathrm{C}=$ " 0 ":

```
RRC 00H Register 00H = 2AH,C = "1"
RRC @01H Register 01H = 02H, register 02H=0BH,C = "1"
```

In the first example, if the general register 00 H contains the value 55 H (01010101B), the statement "RRC 00 H " rotates this value one bit position to the right. The initial value of bit zero ("1") replaces the carry flag and the initial value of the C flag ("1") replaces bit 7. This leaves the new value 2 AH $(00101010 \mathrm{~B})$ in the destination register 00 H . The sign flag and the overflow flag are both cleared to "0".

SBO - Select Bank 0

SB0
Operation: \quad BANK $\leftarrow 0$
The SB0 instruction clears the bank address flag in the FLAGS register (FLAGS.0) to logic zero, selecting the bank 0 register addressing in the set 1 area of the register file.

Flags: \quad No flags are affected.

Format:

Bytes	Cycles	Opcode (Hex)
1	4	4 F

Example: The statement SBO clears FLAGS. 0 to " 0 ", selecting the bank 0 register addressing.

SB1 - Select Bank 1

SB1
Operation: \quad BANK $\leftarrow 1$
The SB1 instruction sets the bank address flag in the FLAGS register (FLAGS.0) to logic one, selecting the bank 1 register addressing in the set 1 area of the register file.

NOTE: Bank 1 is not implemented in some KS88-series microcontrollers.

Flags: \quad No flags are affected.

Format:

$c \mid$	Bytes	Cycles	Opcode (Hex)
opc	1	4	5 F

Example: The statement SB1 sets FLAGS. 0 to "1", selectin the bank 1 register addressing (if bank 1 is implemented in the microcontrooler's internla register file).

SBC - Subtract with Carry

SBC dst,src
Operation: \quad dst \leftarrow dst - src -c
The source operand, along with the current value of the carry flag, is subtracted from the destination operand and the result is stored in the destination. The contents of the source are unaffected. Subtraction is performed by adding the two's-complement of the source operand to the destination operand. In multiple precision arithmetic, this instruction permits the carry ("borrow") from the subtraction of the low-order operands to be subtracted from the subtraction of high-order operands.

Flags: \quad C: Set if a borrow occurred (src > dst); cleared otherwise.
Z: Set if the result is " 0 "; cleared otherwise.
\mathbf{S} : Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred, that is, if the operands were of opposite sign and the sign of the result is the same as the sign of the source; cleared otherwise.
D: Always set to "1".
H: Cleared if there is a carry from the most significant bit of the low-order four bits of the result set otherwise, indicating a "borrow"

Format:

Examples: Given: $\mathrm{R} 1=10 \mathrm{H}, \mathrm{R} 2=03 \mathrm{H}, \mathrm{C}=" 1$ ", register $01 \mathrm{H}=20 \mathrm{H}$, register $02 \mathrm{H}=03 \mathrm{H}$, and register $03 \mathrm{H}=0 \mathrm{AH}$:

SBC	R1,R2	\rightarrow	$R 1=0 C H, R 2=03 H$
SBC	R1,@R2	\rightarrow	$R 1=05 H, R 2=03 H$, register $03 H=0 A H$
SBC	$01 H, 02 H$	\rightarrow	$R e g i s t e r 01 H=1 C H$, register $02 H=03 H$
SBC	$01 H, @ 02 H$	\rightarrow	Register $01 H=15 H$, register $02 H=03 H$, register $03 H=0 A H$
SBC	$01 H, \# 8 A H$	\rightarrow	Register $01 H=95 H ; C, S$, and $V=" 1 "$

In the first example, if the working register R1 contains the value 10 H and the register R2 the value 03 H , the statement "SBC R1,R2" subtracts the source value (03 H) and the C flag value ("1") from the destination $(10 \mathrm{H})$ and then stores the result $(0 \mathrm{CH})$ in the register R1.

SAMSUNF

SCF - Set Carry Flag

SCF
Operation: $\quad C \leftarrow 1$
The carry flag (C) is set to logic one, regardless of its previous value.
Flags:
C: Set to "1".
No other flags are affected.

Format:

| | Bytes | CyclesOpcode
 (Hex) | |
| :---: | :---: | :---: | :---: | :---: |
| opc | 1 | 4 | DF |

Example: The statement SCF sets the carry flag to "1".

SRA - Shift Right Arithmetic

SRA

 dstOperation:

```
dst (7) \leftarrow dst (7)
C}\leftarrow\mathrm{ dst (0)
dst (n) \leftarrowdst (n + 1), n = 0-6
```

An arithmetic shift-right of one bit position is performed on the destination operand. Bit zero (the LSB) replaces the carry flag. The value of bit 7 (the sign bit) is unchanged and is shifted into the bit position 6.

Flags: \quad C: Set if the bit shifted from the LSB position (bit zero) was "1".
Z: Set if the result is " 0 "; cleared otherwise.
\mathbf{S} : Set if the result is negative; cleared otherwise.
V: Always cleared to "0".
D: Unaffected.
H: Unaffected.

Format:

| | Bytes | Cycles | Opcode
 (Hex) | Addr Mode
 dst | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| opc | dst | 2 | 4 | D0 | R |

Examples: Given: Register $00 \mathrm{H}=9 \mathrm{AH}$, register $02 \mathrm{H}=03 \mathrm{H}$, register $03 \mathrm{H}=0 \mathrm{BCH}$, and $\mathrm{C}=$ " 1 ":

SRA	00 H	\rightarrow	Register $00 \mathrm{H}=0 \mathrm{CD}, \mathrm{C}=" 0 "$
SRA	$@ 02 \mathrm{H}$	\rightarrow	Register $02 \mathrm{H}=03 \mathrm{H}$, register $03 \mathrm{H}=0 \mathrm{DEH}, \mathrm{C}=" 0 "$

In the first example, if the general register 00H contains the value 9AH (10011010B), the statement "SRA 00 H " shifts the bit values in the register 00 H right one bit position. Bit zero ("0") clears the C flag and bit 7 ("1") is then shifted into the bit 6 position (bit 7 remains unchanged). This leaves the value 0CDH (11001101B) in the destination register 00 H .

SRP/SRP0/SRP1 — Set Register Pointer

SRP	src		
SRP0	src		
SRP1	src		
Operation:	If src (1) = 1 and $\operatorname{src}(0)=0$ then:	$\mathrm{RP0}(3-7) \leftarrow$	src (3-7)
	If $\operatorname{src}(1)=0$ and $\operatorname{src}(0)=1$ then:	RP1 (3-7) \leftarrow	src (3-7)
	If src (1) $=0$ and $\operatorname{src}(0)=0$ then:	RP0 (4-7) \leftarrow	src (4-7),
		$\mathrm{RP0}(3) \leftarrow$	0
		RP1 (4-7) \leftarrow	src (4-7),
		RP1 (3)	

The source data bits one and zero (LSB) determine whether to write one or both of the register pointers, RP0 and RP1. Bits 3-7 of the selected register pointer are written unless both register pointers are selected. RP0.3 is then cleared to logic zero and RP1.3 is set to logic one.

Flags: \quad No flags are affected.

Format:

	Bytes	Cycles	Opcode (Hex)	Addr Mode Src	
opc	src	2	4	31	IM

Examples: The statement SRP \#40H sets the register pointer 0 (RP0) at the location 0D6H to 40H and the register pointer $1(\mathrm{RP} 1)$ at the location 0D7H to 48 H .

The statement "SRP0 \#50H" would set RP0 to 50 H , and the statement "SRP1 \#68H" would set RP1 to 68 H .

NOTE: Before execute the STOP instruction, You must set the STPCON register as "10100101b". Otherwise the STOP instruction will not execute.

STOP - Stop Operation

STOP

Operation: The STOP instruction stops the both the CPU clock and system clock and causes the microcontroller to enter Stop mode. During Stop mode, the contents of on-chip CPU registers, peripheral registers, and I/O port control and data registers are retained. Stop mode can be released by an external reset operation or by external interrupts. For the reset operation, the RESET pin must be held to Low level until the required oscillation stabilization interval has elapsed.

Flags: \quad No flags are affected.

Format:

c	Bytes	Cycles	Opcode (Hex)	Addr Mode dst	$\underline{\text { src }}$

Example: The statement STOP halts all microcontroller operations.

SUB - Subtract

SUB dst,src
Operation: \quad dst \leftarrow dst - src
The source operand is subtracted from the destination operand and the result is stored in the destination. The contents of the source are unaffected. Subtraction is performed by adding the two's complement of the source operand to the destination operand.

Flags: C: Set if a "borrow" occurred; cleared otherwise.
Z: Set if the result is " 0 "; cleared otherwise.
S: Set if the result is negative; cleared otherwise.
V: Set if arithmetic overflow occurred, that is, if the operands were of opposite signs and the sign of the result is of the same as the sign of the source operand; cleared otherwise.
D: Always set to "1".
H: Cleared if there is a carry from the most significant bit of the low-order four bits of the result; set otherwise indicating a "borrow".

Format:

			Bytes	Cycles	Opcode (Hex)	Addr Mode dst srC	
opc	dst \\| src		2	4	22	$r \quad r$	
				6	23	Ir	
opc	src	dst	3	6	24	$\mathrm{R} \quad \mathrm{R}$	
				6	25	R IR	
opc	dst	src	3	6	26	$\mathrm{R} \quad \mathrm{M}$	

Examples: Given: $\mathrm{R} 1=12 \mathrm{H}, \mathrm{R} 2=03 \mathrm{H}$, register $01 \mathrm{H}=21 \mathrm{H}$, register $02 \mathrm{H}=03 \mathrm{H}$, register $03 \mathrm{H}=0 \mathrm{AH}$:

SUB	$R 1, R 2$	\rightarrow	$R 1=0 F H, R 2=03 H$
SUB	$R 1, @ R 2$	\rightarrow	$R 1=08 H, R 2=03 H$
SUB	$01 H, 02 H$	\rightarrow	Register $01 H=1 \mathrm{HH}$, register $02 \mathrm{H}=03 \mathrm{H}$
SUB	$01 \mathrm{H}, @ 02 \mathrm{H}$	\rightarrow	Register $01 \mathrm{H}=17 \mathrm{H}$, register $02 \mathrm{H}=03 \mathrm{H}$
SUB	$01 \mathrm{H}, \# 90 \mathrm{H}$	\rightarrow	Register $01 \mathrm{H}=91 \mathrm{H} ; \mathrm{C}, \mathrm{S}$, and $\mathrm{V}=" 1 "$
SUB	$01 \mathrm{H}, \# 65 \mathrm{H}$	\rightarrow	Register $01 \mathrm{H}=0 \mathrm{BCH} ; \mathrm{C}$ and $\mathrm{S}=" 1 ", \mathrm{~V}=" 0 "$

In the first example, if he working register R1 contains the value 12 H and if the register R 2 contains the value 03 H , the statement "SUB R1,R2" subtracts the source value $(03 \mathrm{H})$ from the destination value $(12 \mathrm{H})$ and stores the result (0 FH) in the destination register R1.

SWAP - Swap Nibbles

SWAP dst
Operation: \quad dst $(0-3) \leftrightarrow \operatorname{dst}(4-7)$
The contents of the lower four bits and the upper four bits of the destination operand are swapped.

Flags: C: Undefined.
Z: Set if the result is " 0 "; cleared otherwise.
\mathbf{S} : Set if the result bit 7 is set; cleared otherwise.
V: Undefined.
D: Unaffected.
H: Unaffected.

Format:

| | Bytes | Cycles | Opcode
 (Hex) | Addr Mode
 dst | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| opc | dst | 2 | 4 | F0 | R |

Examples: Given: Register $00 \mathrm{H}=3 \mathrm{EH}$, register $02 \mathrm{H}=03 \mathrm{H}$, and register $03 \mathrm{H}=0 \mathrm{~A} 4 \mathrm{H}$:
SWAP 00H $\rightarrow \quad$ Register 00H $=0 \mathrm{E} 3 \mathrm{H}$
SWAP @02H $\rightarrow \quad$ Register $02 \mathrm{H}=03 \mathrm{H}$, register $03 \mathrm{H}=4 \mathrm{AH}$

In the first example, if the general register 00 H contains the value 3EH (00111110B), the statement "SWAP 00 H " swaps the lower and the upper four bits (nibbles) in the 00 H register, leaving the value 0E3H (11100011B).

TCM - Test Complement under Mask

TCM dst,src
Operation: (NOT dst) AND src
This instruction tests selected bits in the destination operand for a logic one value. The bits to be tested are specified by setting a "1" bit in the corresponding position of the source operand (mask). The TCM statement complements the destination operand, which is then ANDed with the source mask. The zero (Z) flag can then be checked to determine the result. The destination and the source operands are unaffected.

Flags: C: Unaffected.
Z: Set if the result is " 0 "; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Always cleared to "0".
D: Unaffected.
H: Unaffected.

Format:

Examples: Given: $\mathrm{RO}=0 \mathrm{C} 7 \mathrm{H}, \mathrm{R} 1=02 \mathrm{H}, \mathrm{R} 2=12 \mathrm{H}$, register $00 \mathrm{H}=2 \mathrm{BH}$, register $01 \mathrm{H}=02 \mathrm{H}$, and register $02 \mathrm{H}=23 \mathrm{H}$:

TCM	R0,R1	\rightarrow	$R 0=0 C 7 H, R 1=02 H, Z=" 1 "$
TCM	$R 0, @ R 1$	\rightarrow	$R 0=0 C 7 H, R 1=02 H$, register $02 \mathrm{H}=23 H, Z=" 0 "$
TCM	$00 H, 01 H$	\rightarrow	Register $00 \mathrm{H}=2 \mathrm{BH}$, register $01 \mathrm{H}=02 \mathrm{H}, \mathrm{Z}=" 1 "$
TCM	$00 \mathrm{H}, @ 01 \mathrm{H}$	\rightarrow	Register $00 \mathrm{H}=2 \mathrm{BH}$, register $01 \mathrm{H}=02 \mathrm{H}$, register $02 \mathrm{H}=23 \mathrm{H}, \mathrm{Z}=" 1 "$
			Register $00 \mathrm{H}=2 \mathrm{BH}, \mathrm{Z}=" 0 "$

In the first example, if the working register R0 contains the value 0C7H (11000111B) and the register R1 the value 02 H (00000010B), the statement "TCM R0,R1" tests bit one in the destination register for a "1" value. Because the mask value corresponds to the test bit, the Z flag is set to logic one and can be tested to determine the result of the TCM operation.

TM — Test under Mask

TM dst,src
Operation: dst AND src
This instruction tests selected bits in the destination operand for a logic zero value. The bits to be tested are specified by setting a "1" bit in the corresponding position of the source operand (mask), which is ANDed with the destination operand. The zero (Z) flag can then be checked to determine the result. The destination and the source operands are unaffected.

Flags: C: Unaffected.
Z: Set if the result is "0"; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Always reset to "0".
D: Unaffected.
H: Unaffected.

Format:

			Bytes	Cycles	Opcode (Hex)	Addr Mode dst src	
opc \quad dst \\| sr			2	4	72	r r	
				6	73	Ir	
opc	src	dst	3	6	74	$R \quad \mathrm{R}$	
				6	75	R IR	
opc	dst	SrC	3	6	76	$R \quad \mathrm{M}$	

Examples: Given: $\mathrm{RO}=0 \mathrm{C} 7 \mathrm{H}, \mathrm{R1}=02 \mathrm{H}, \mathrm{R} 2=18 \mathrm{H}$, register $00 \mathrm{H}=2 \mathrm{BH}$, register $01 \mathrm{H}=02 \mathrm{H}$, and register $02 \mathrm{H}=23 \mathrm{H}$:

TM	R0,R1	\rightarrow	$\mathrm{R0}=0 \mathrm{C} 7 \mathrm{H}, \mathrm{R} 1=02 \mathrm{H}, \mathrm{Z}=$ "0"
TM	R0,@R1	\rightarrow	$\mathrm{R0}=0 \mathrm{C} 7 \mathrm{H}, \mathrm{R1}=02 \mathrm{H}$, register $02 \mathrm{H}=23 \mathrm{H}, \mathrm{Z}=$ "0"
TM	00H,01H	\rightarrow	Register $00 \mathrm{H}=2 \mathrm{BH}$, register $01 \mathrm{H}=02 \mathrm{H}, \mathrm{Z}={ }^{\text {c }} 0$ "
TM	00H,@01H	\rightarrow	$\begin{aligned} & \text { Register } 00 \mathrm{H}=2 \mathrm{BH} \text {, register } 01 \mathrm{H}=02 \mathrm{H}, \\ & \text { register } 02 \mathrm{H}=23 \mathrm{H}, Z=" 0 " \end{aligned}$
TM	00H,\#54H	\rightarrow	Register $00 \mathrm{H}=2 \mathrm{BH}, \mathrm{Z}=$ "1"

In the first example, if the working register R0 contains the value 0C7H (11000111B) and the register R1 the value 02 H (00000010B), the statement "TM R0,R1" tests bit one in the destination register for a " 0 " value. Because the mask value does not match the test bit, the Z flag is cleared to logic zero and can be tested to determine the result of the TM operation.

WFI - Wate for Interrupt

WFI

Operation: The CPU is effectively halted before an interrupt occurs, except that DMA transfers can still take place during this wait state. The WFI status can be released by an internal interrupt, including a fast interrupt.

Flags: \quad No flags are affected.

Format:

| | Bytes | Cycles | Opcode
 (Hex) |
| :---: | :---: | :---: | :---: | :---: |
| opc | 1 | 4 n | 3 F |

Example: The following sample program structure shows the sequence of operations that follow a "WFI" statement:

XOR - Logical Exclusive OR

XOR dst,src
Operation: dst \leftarrow dst XOR src
The source operand is logically exclusive-ORed with the destination operand and the result is stored in the destination. The exclusive-OR operation results in a "1" bit being stored whenever the corresponding bits in the operands are different. Otherwise, a "0" bit is stored.

Flags: C: Unaffected.
Z: Set if the result is " 0 "; cleared otherwise.
S: Set if the result bit 7 is set; cleared otherwise.
V: Always reset to "0".
D: Unaffected.
H: Unaffected.

Format:

			Bytes	Cycles	Opcode (Hex)			
opc ${ }^{\text {dst }}$ / sr			2	4	B2	r	r	
			6	B3	r	Ir		
opc	src	dst		3	6	B4	R	R
			6		B5	R	IR	
opc	dst	src	3	6	B6	R	IM	

Examples: Given: $R 0=0 \mathrm{C} 7 \mathrm{H}, \mathrm{R} 1=02 \mathrm{H}, \mathrm{R} 2=18 \mathrm{H}$, register $00 \mathrm{H}=2 \mathrm{BH}$, register $01 \mathrm{H}=02 \mathrm{H}$, and register $02 \mathrm{H}=23 \mathrm{H}$:

XOR	R0,R1	\rightarrow	$R 0=0 C 5 H, R 1=02 H$
XOR	$R 0, @ R 1$	\rightarrow	$R 0=0 E 4 H, R 1=02 H$, register $02 \mathrm{H}=23 \mathrm{H}$
XOR	$00 \mathrm{H}, 01 \mathrm{H}$	\rightarrow	Register $00 \mathrm{H}=29 \mathrm{H}$, register $01 \mathrm{H}=02 \mathrm{H}$
XOR	$00 \mathrm{H}, @ 01 \mathrm{H}$	\rightarrow	Register $00 \mathrm{H}=08 \mathrm{H}$, register $01 \mathrm{H}=02 \mathrm{H}$, register $02 \mathrm{H}=23 \mathrm{H}$
			Register $00 \mathrm{H}=7 \mathrm{FH}$

In the first example, if the working register R 0 contains the value 0 C 7 H and if the register R 1 contains the value 02 H , the statement "XOR R0,R1" logically exclusive-ORs the R1 value with the R0 value and stores the result (0 C 5 H) in the destination register R0.

7

CLOCK CIRCUIT

OVERVIEW

The clock frequency generated for the Main clock of S3C84E5/C84E9/P84E9 by an external crystal can range from 1 MHz to 12 MHz . The maximum CPU clock frequency is 12 MHz . The XIN and XOUT pins connect the external oscillator or clock source to the on-chip clock circuit. Also the subsystem clock frequency for the Watch timer by an external crystal can range from 30 kHz to 35 kHz . The XTIN and XTOUT pins connect the external oscillator or clock source to the on-chip clock circuit. The sub-system oscillation pins, XTIN and XTOUT can be used for normal digital I/O pins (P0.0, P0.1) if they are not used for oscillation pins.

SYSTEM CLOCK CIRCUIT

The system clock circuit has the following components:

- External crystal or ceramic resonator oscillation source (or an external clock source)
- Oscillator stop and wake-up functions
- Programmable frequency divider for the CPU clock (fxx divided by $1,2,8$, or 16)
- System clock control register, CLKCON
- Oscillator control register, OSCCON and STOP control register, STPCON

Figure 7-1. Main Oscillator Circuit (Crystal or Ceramic Oscillator)

Figure 7-2. Sub-System Oscillator Circuit (Crystal Oscillator)

CLOCK STATUS DURING POWER-DOWN MODES

The two power-down modes, Stop mode and Idle mode, affect the system clock as follows:

- In Stop mode, the main oscillator is halted. Stop mode is released, and the oscillator is started, by a reset operation or an external interrupt (with RC delay noise filter), and can be released by internal interrupt too when the sub-system oscillator is running and watch timer is operating with sub-system clock.
- In Idle mode, the internal clock signal is gated to the CPU, but not to interrupt structure, timers and timer/ counters. Idle mode is released by a reset or by an external or internal interrupt.

Figure 7-3. System Clock Circuit Diagram

SYSTEM CLOCK CONTROL REGISTER (CLKCON)

The system clock control register, CLKCON, is located in set 1, address D4H. It is read/write addressable and has the following functions:

- Oscillator frequency divide-by value

After the main oscillator is activated, and the $\mathrm{fxx} / 16$ (the slowest clock speed) is selected as the CPU clock. If necessary, you can then increase the CPU clock speed $\mathrm{fxx} / 8$, $\mathrm{fxx} / 2$, or $\mathrm{fxx} / 1$.

Figure 7-4. System Clock Control Register (CLKCON)

NOTE: In strong mode the warm-up time is less than 100 ms .
When the CPU is operated with fxt (sub-oscillation clock), it is possible to use the stop instruction but in this case before using stop instruction, you must select fxx/128 for basic timer counter clock input.
Then the oscillation stabilization time is $62.5((1 / 32768) \times 128 \times 16) \mathrm{ms}+100 \mathrm{~ms}$.
Here the warm-up time is from the time that the stop release signal activates to the time that basic timer starts counting.

Figure 7-5. Oscillator Control Register (OSCCON)

Figure 7-6. STOP Control Register (STPCON) RESET and POWER-DOWN

SYSTEM RESET

OVERVIEW

During a power-on Reset, the voltage at VDD goes to High level and the nRESET pin is forced to Low level. The nRESET signal is input through a Schmitt trigger circuit where it is then synchronized with the CPU clock. This procedure brings S3C84E5/C84E9/P84E9 into a known operating status.

To allow time for internal CPU clock oscillation to stabilize, the nRESET pin must be held to Low level for a minimum time interval after the power supply comes within tolerance. The minimum required oscillation stabilization time for a reset operation is 1 millisecond.

Whenever a reset occurs during normal operation (that is, when both VDD and nRESET are High level), the nRESET pin is forced Low and the Reset operation starts. All system and peripheral control registers are then Reset to their default hardware values

In summary, the following sequence of events occurs during a Reset operation:

- Interrupt is disabled.
- The watchdog function (basic timer) is enabled.
- Ports 0-4 are set to input mode with pull-up resistor, P0.0 and P0.1 are set to XTin and XTout respectively.
- Peripheral control and data registers are disabled and reset to their default hardware values.
- The program counter (PC) is loaded with the program reset address in the ROM, 0100H.
- When the programmed oscillation stabilization time interval has elapsed, the instruction stored in ROM location 0100 H (and 0101 H) is fetched and executed.

NORMAL MODE RESET OPERATION

In normal (masked ROM) mode, the TEST pin is tied to VSS. A reset enables access to the 32-Kbyte on-chip ROM.

NOTE

To program the duration of the oscillation stabilization interval, you make the appropriate settings to the basic timer control register, BTCON, before entering Stop mode. Also, if you do not want to use the basic timer watchdog function (which causes a system reset if a basic timer counter overflow occurs), you can disable it by writing '1010B' to the upper nibble of BTCON.

HARDWARE RESET VALUES

Table 8-1, 8-2, and 8-3 list the reset values for CPU and system registers, peripheral control registers, and peripheral data registers following a reset operation. The following notation is used to represent reset values:
— A "1" or a " 0 " shows the reset bit value as logic one or logic zero, respectively.

- An "x" means that the bit value is undefined after a reset.
— A dash ("-") means that the bit is either not used or not mapped, but read 0 is the bit value.

Table 8-1. S3C84E5/C84E9/P84E9 Set 1 Register Values After RESET

Register Name	Mnemonic	Address		Bit Values After RESET							
		Dec	Hex	7	6	5	4	3	2	1	0
Timer B control register	TBCON	208	DOH	0	0	0	0	0	0	0	0
Timer B data register (high byte)	TBDATAH	209	D1H	1	1	1	1	1	1	1	1
Timer B data register (low byte)	TBDATAL	210	D2H	1	1	1	1	1	1	1	1
Basic timer control register	BTCON	211	D3H	0	0	0	0	0	0	0	0
Clock control register	CLKCON	212	D4H	0	0	0	0	0	0	0	0
System flags register	FLAGS	213	D5H	X	X	X	x	X	X	0	0
Register pointer 0	RP0	214	D6H	1	1	0	0	0	-	-	-
Register pointer 1	RP1	215	D7H	1	1	0	0	1	-	-	-
Stack pointer (high byte)	SPH	216	D8H	X	X	X	X	X	X	X	X
Stack pointer (low byte)	SPL	217	D9H	X	X	X	x	X	x	x	X
Instruction pointer (high byte)	IPH	218	DAH	X	X	X	X	X	X	X	X
Instruction pointer (low byte)	IPL	219	DBH	X	X	X	X	X	X	X	X
Interrupt request register	IRQ	220	DCH	0	0	0	0	0	0	0	0
Interrupt mask register	IMR	221	DDH	X	X	X	X	X	X	X	X
System mode register	SYM	222	DEH	0	0	0	x	X	x	0	0
Register page pointer	PP	223	DFH	0	0	0	0	0	0	0	0

Table 8-2. S3C84E5/C84E9/P84E9 Set 1, Bank 0 Register Values After RESET

Register Name	Mnemonic	Address		Bit Values After RESET							
		Dec	Hex	7	6	5	4	3	2	1	0
Port 0 data register	P0	224	E0H	0	0	0	0	0	0	0	0
Port 1 data register	P1	225	E1H	0	0	0	0	0	0	0	0
Port 2 data register	P2	226	E2H	0	0	0	0	0	0	0	0
Port 3 data register	P3	227	E3H	0	0	0	0	0	0	0	0
Port 4 data register	P4	228	E4H	0	0	0	0	0	0	0	0
STOP control register	STPCON	229	E5H	0	0	0	0	0	0	0	0
Port 0 control register (high byte)	POCONH	230	E6H	0	0	0	0	0	0	0	0
Port 0 control register (low byte)	P0CONL	231	E7H	0	0	0	0	1	1	1	1
Port 1 control register (high byte)	P1CONH	232	E8H	0	0	0	0	0	0	0	0
Port 1 control register (low byte)	P1CONL	233	E9H	0	0	0	0	0	0	0	0
Port 2 control register (high byte)	P2CONH	234	EAH	0	0	0	0	0	0	0	0
Port 2 control register (low byte)	P2CONL	235	EBH	0	0	0	0	0	0	0	0
Port 2 interrupt control register	P2INT	236	ECH	0	0	0	0	0	0	0	0
Port 2 interrupt/pending register	P2INTPND	237	EDH	0	0	0	0	0	0	0	0
Port 3 control register (high byte)	P3CONH	238	EEH	0	0	0	0	0	0	0	0
Port 3 control register (low byte)	P3CONL	239	EFH	0	0	0	0	0	0	0	0
Port 4 control register (high byte)	P4CONH	240	FOH	0	0	0	0	0	0	0	0
Port 4 control register (low byte)	P4CONL	241	F1H	0	0	0	0	0	0	0	0
Port 4 interrupt control register	P4INT	242	F2H	0	0	0	0	0	0	0	0
Port 4 interrupt/pending register	P4INTPND	243	F3H	0	0	0	0	0	0	0	0
UART pending register	UARTPND	244	F4H	0	0	0	0	0	0	0	0
UART data register	UDATA	245	F5H	1	1	1	1	1	1	1	1
UART control register	UARTCON	246	F6H	0	0	0	0	0	0	0	0
A/D converter control register	ADCON	247	F7H	0	0	0	0	0	0	0	0
A/D converter data register(high byte)	ADDATAH	248	F8H	0	0	0	0	0	0	0	0
A/D converter data register(low byte)	ADDATAL	249	F9H	0	0	0	0	0	0	0	0
Watch timer control register	WTCON	250	FAH	0	0	0	0	0	0	0	0
Oscillator control register	OSCCON	251	FBH	0	0	0	0	0	0	0	0
Location FCH is factory use only.											
Basic timer counter register	BTCNT	253	FDH	0	0	0	0	0	0	0	0
Location FEH is not mapped.											
Interrupt priority register	IPR	255	FFH	X	X	x	X	X	X	X	X

Table 8-3. S3C84E5/C84E9/P84E9 Set 1, Bank 1 Register Values After RESET

Register Name	Mnemonic	Address		Bit Values After RESET							
		Dec	Hex	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Timer A, 1 interrupt pending register	TINTPND	224	E0H	0	0	0	0	0	0	0	0
Timer A control register	TACON	225	E1H	0	0	0	0	0	0	0	0
Timer A data register	TADATA	226	E2H	1	1	1	1	1	1	1	1
Timer A counter register	TACNT	227	E3H	0	0	0	0	0	0	0	0
Timer 1(0) data register (high byte)	T1DATAH0	228	E4H	1	1	1	1	1	1	1	1
Timer 1(0) data register (low byte)	T1DATAL0	229	E5H	1	1	1	1	1	1	1	1
Timer 1(1) data register (high byte)	T1DATAH1	230	E6H	1	1	1	1	1	1	1	1
Timer 1(1) data register (low byte)	T1DATAL1	231	E7H	1	1	1	1	1	1	1	1
Timer 1(0) control register	T1CON0	232	E8H	0	0	0	0	0	0	0	0
Timer 1(1) control register	T1CON1	233	E9H	0	0	0	0	0	0	0	0
Timer 1(0) counter register (high byte)	T1CNTH0	234	EAH	0	0	0	0	0	0	0	0
Timer 1(0) counter register (low byte)	T1CNTL0	235	EBH	0	0	0	0	0	0	0	0
Timer 1(1) counter register (high byte)	T1CNTH1	236	ECH	0	0	0	0	0	0	0	0
Timer 1(1) counter register (low byte)	T1CNTL1	237	EDH	0	0	0	0	0	0	0	0
UART baud rate data register (high)	BRDATAH	238	EEH	1	1	1	1	1	1	1	1
UART baud rate data register (low)	BRDATAL	239	EFH	1	1	1	1	1	1	1	1

POWER-DOWN MODES

STOP MODE

Stop mode is invoked by the instruction STOP (opcode 7FH). In Stop mode, the operation of the CPU and all peripherals is halted. That is, the on-chip main oscillator stops and the supply current is reduced to less than $3 \mu \mathrm{~A}$ except for the current consumption of LVR (Low voltage Reset) circuit. All system functions stop when the clock "freezes," but data stored in the internal register file is retained. Stop mode can be released in one of two ways: by a reset or by interrupts.

NOTE

Do not use stop mode if you are using an external clock source because XIN input must be restricted internally to VSS to reduce current leakage.

Using RESET to Release Stop Mode

Stop mode is released when the nRESET signal is released and returns to high level: all system and peripheral control registers are reset to their default hardware values and the contents of all data registers are retained. A reset operation automatically selects a slow clock (1/16) because CLKCON. 3 and CLKCON. 4 are cleared to '00B'. After the programmed oscillation stabilization interval has elapsed, the CPU starts the system initialization routine by fetching the program instruction stored in ROM location 0100H (and 0101H).

Using an External Interrupt to Release Stop Mode

External interrupts with an RC-delay noise filter circuit can be used to release Stop mode. Which interrupt you can use to release Stop mode in a given situation depends on the microcontroller's current internal operating mode. The external interrupts in the S3C84E5/C84E9/P84E9 interrupt structure that can be used to release Stop mode are:

- External interrupts P2.0-P2.7 (INT0-INT7) and P4.0-P4.2 (INT8-INT10)

Please note the following conditions for Stop mode release:

- If you release Stop mode using an external interrupt, the current values in system and peripheral control registers are unchanged.
- If you use an external interrupt for Stop mode release, you can also program the duration of the oscillation stabilization interval. To do this, you must make the appropriate control and clock settings before entering Stop mode.
- When the Stop mode is released by external interrupt, the CLKCON. 4 and CLKCON. 3 bit-pair setting remains unchanged and the currently selected clock value is used.
- The external interrupt is serviced when the Stop mode release occurs. Following the IRET from the service routine, the instruction immediately following the one that initiated Stop mode is executed.

Using an internal Interrupt to Release Stop Mode

Activate any enabled interrupt, causing stop mode to be released. Other things are same as using external interrupt.

How to Enter into Stop Mode

There are two steps to enter into Stop mode:

1. Handling OSCCON register.
2. Handling STPCON register then writing Stop instruction (keep the order).

IDLE MODE

Idle mode is invoked by the instruction IDLE (opcode 6FH). In idle mode, CPU operations are halted while some peripherals remain active. During idle mode, the internal clock signal is gated away from the CPU, but all peripherals timers remain active. Port pins retain the mode (input or output) they had at the time idle mode was entered.

There are two ways to release idle mode:

1. Execute a reset. All system and peripheral control registers are reset to their default values and the contents of all data registers are retained. The reset automatically selects the slow clock fxx/ 16 because CLKCON. 4 and CLKCON. 3 are cleared to 'OOB'. If interrupts are masked, a reset is the only way to release idle mode.
2. Activate any enabled interrupt, causing idle mode to be released. When you use an interrupt to release idle mode, the CLKCON. 4 and CLKCON. 3 register values remain unchanged, and the currently selected clock value is used. The interrupt is then serviced. When the return-from-interrupt (IRET) occurs, the instruction immediately following the one that initiated idle mode is executed.

I/O PORTS

OVERVIEW

The S3C84E5/C84E9/P84E9 microcontroller has seven bit-programmable I/O ports, P0-P4. This gives a total of 36 I/O pins. Each port can be flexibly configured to meet application design requirements. The CPU accesses ports by directly writing or reading port registers. No special I/O instructions are required.

Table 9-1 gives you a general overview of the S3C84E5/C84E9/P84E9 I/O port functions.

Table 9-1. S3C84E5/C84E9/P84E9 Port Configuration Overview

Port	Configuration Options
0	Bit programmable port; input or output mode selected by software; input or push-pull output. Software assignable pull-up resistor. Alternately, P0.0-P0.7 can be used as I/O for Timer A, Timer 1(0,1). P0.0 and P0.1 can alternately be used for subsystem oscillator in/out mode selected by software
1	Bit programmable port; input or output mode selected by software; input or push-pull output. Software assignable pull-up resistor. Alternatively, P1.0-P1.5 can be used as Timer A, Timer 1(0), UART, Watch Timer Buzzer output
2	Bit programmable port; input or output mode selected by software; input or push-pull output. Software assignable pull-up. Alternately, P2.0-P2.7 can be used as inputs for external interrupts INT0-INT7. (with noise filters and interrupt controller)
3	Bit programmable port; input or output mode selected by software; input or push-pull output. Software assignable pull-up. Alternately, P3.0-P3.7 can be used as analog inputs for A/D converter modules.
4	Bit programmable port; input or output mode selected by software; input or push-pull output. Software assignable pull-up. Alternatively, P4.0-P4.5 can be used as Timer B, inputs for external interrupts INT8-INT10. (with noise filters and interrupt controller)

simsunf

PORT DATA REGISTERS

Table 9-2 gives you an overview of the register locations of all seven S3C84E5/C84E9/P84E9 I/O port data registers. Data registers for ports 0, 1, 2, 3 and 4 have the general format shown in Table 9-2.

Table 9-2. Port Data Register Summary

Register Name	Mnemonic	Decimal	Hex	Location	R/W
Port 0 data register	P0	224	E0H	Set 1, Bank 0	R/W
Port 1 data register	P1	225	E1H	Set 1, Bank 0	R/W
Port 2 data register	P2	226	E2H	Set 1, Bank 0	R/W
Port 3 data register	P3	227	E3H	Set 1, Bank 0	R/W
Port 4 data register	P4	228	E4H	Set 1, Bank 0	R/W

PORT 0

Port 0 is an 8 -bit I/O port that you can use two ways:

- General-purpose digital I/O
- Alternative function: TACAP, TACK, T1CAP0, T1OUT1, T1CK1, T1CAP1, XTIN, XToUT

Port 0 is accessed directly by writing or reading the port 0 data register, P 0 at location EOH in set 1 , bank 0 .

Port 0 Control Register (POCONH/POCONL)

Port 0 has two 8-bit control registers: P0CONH for P0.4-P0.7 and P0CONL for P0.0-P0.3. A reset clears the POCONH and POCONL registers to " 00 H " and " 0 FH", configuring all pins to input modes. You use control registers settings to select input or output mode (push-pull) and enable the alternative functions.

When programming the port, please remember that any alternative peripheral I/O function you configure using the port 0 control registers must also be enabled in the associated peripheral module.

> Port 0 Control Register, High Byte (POCONH)
> E6H, Set1, Bank0, R/W, Reset value="00"

MSB | .7 | .6 | .5 | .4 | .3 | .2 | .1 | .0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

[.7-.6] P0.7/TACAP Configuration Bits

00 = Input mode with pull-up; TACAP input
01 = Input mode; TACAP input
$1 \mathrm{X}=$ Push-pull output mode
[.5-.4] P0.6/TACK Configuration Bits
00 = Input mode with pull-up; TACK input
01 = Input mode; TACK input
$1 \mathrm{X}=$ Push-pull output mode
[.3-2] P0.5/T1CAPO Configuration Bits
$00=$ Input mode with pull-up; T1CAP0 input
01 = Input mode; T1CAP0 input
$1 \mathrm{X}=$ Push-pull output mode
[.1-.0] P0.4/T1OUT1 Configuration Bits
$00=$ Input mode with pull-up
01 = Input mode
$10=$ Push-pull output mode
11 = Alternative function mode: T1OUT1 output

Figure 9-1. Port 0 High Byte Control Register (POCONH)

s^Msung

Port 0 Control Register, Low Byte (POCONL)
E7H, Set1, Bank0, R/W, Reset value="0FH"
MSB

.7	.6	.5	.4	.3	.2	.1	.0

[.7-.6] P0.3/T1CK1 Configuration Bits

$00=$ Input mode with pull-up; T1CK1 input
01 = Input mode; T1CK1 input
$1 \mathrm{X}=$ Push-pull output mode
[.5-.4] P0.2/T1CAP1 Configuration Bits
$00=$ Input mode with pull-up; T1CAP1 input
01 = Input mode; T1CAP1 input
$1 \mathrm{X}=$ Push-pull output mode
[.3-.2] P0.1/XTout Configuration Bits
$00=$ Input mode with pull-up
01 = Input mode
$10=$ Push-pull output mode
11 = Alternative function mode: Sub oscillator output (XTout)
[.1-.0] P0.0/XTin Configuration Bits
$00=$ Input mode with pull-up
01 = Input mode
$10=$ Push-pull output mode
11 = Alternative function mode: Sub oscillator input (XTin)

Figure 9-2. Port 0 Low Byte Control Register (POCONL)

PORT 1

Port 1 is a 6-bit I/O port with individually configurable pins that you can use two ways:

- General-purpose digital I/O
- Alternative function: TAOUT, T1OUT0, T1CK0, BZOUT, TXD, RXD

Port 1 is accessed directly by writing or reading the port 1 data register, P 1 at location E 1 H in set 1 , bank 0 .

Port 1 Control Register (P1CONH, P1CONL)

Port 1 has two 6-bit control registers: P1CONH for P1.4-P1.5 and P1CONL for P1.0-P1.3. A reset clears the P 1 CONH and P 1 CONL registers to " 00 H ", configuring all pins to input modes. You use control registers settings to select input or output mode (push-pull) and enable the alternative functions.

When programming the port, please remember that any alternative peripheral I/O function you configure using the port 1 control registers must also be enabled in the associated peripheral module.

Port 1 Control Register, High Byte (P1CONH) E8H, Set1, Bank0, R/W, Reset value="00"									LSB
MSB	. 7	. 6	. 5	. 4	. 3	. 2	. 1	. 0	
[.7-.4] Not used (must keep always 0) [.3-.2] P1.5/TXD Configuration Bits $00=$ Input mode with pull-up 01 = Input mode $10=$ Push-pull output mode 11 = Alternative function mode: TXD output [.1-.0] P1.4/RXD Configuration Bits $00=$ Input mode with pull-up; RXD input 01 = Input mode; RXD input $10=$ Push-pull output mode 11 = Alternative function mode: RXD output									

Figure 9-3. Port 1 High-Byte Control Register (P1CONH)

Port 1 Control Register, Low Byte (P1CONL)
E9H, Set1, Bank0, R/W, Reset value="00H"
MSB

.7	.6	.5	.4	.3	.2	.1	.0

[.7-.6] P1.3/BZOUT Configuration Bits

00 = Input mode with pull-up
01 = Input mode
$10=$ Push-pull output mode
11 = Alternative function mode: BZOUT output
[.5-.4] P1.2/T1OUTO Configuration Bits
$00=$ Input mode with pull-up
01 = Input mode
10 = Push-pull output mode
11 = Alternative function mode: T1OUT0 output
[.3-.2] P1.1/T1CK0 Configuration Bits
$00=$ Input mode with pull-up; T1CK0 input
01 = Input mode; T1CK0 input
$1 \mathrm{X}=$ Push-pull output mode
[.1-.0] P1.0/TAOUT Configuration Bits
$00=$ Input mode with pull-up
01 = Input mode
$10=$ Push-pull output mode
11 = Alternative function mode: TAOUT output

Figure 9-4. Port 1 Low-Byte Control Register (P1CONL)

PORT 2

Port 2 is an 8-bit I/O port with individually configurable pins. Port 2 pins are accessed directly by writing or reading the port 2 data register, P2 at location E2H in set 1, bank 0. P2.0-P2.7 can serve as digital inputs, outputs (push pull) or you can configure the following alternative functions:

- General-purpose digital I/O
- Alternative function: INTO- INT7

Port 2 Control Register (P2CONH, P2CONL)

Port 2 has two 8-bit control registers: P2CONH for P2.4-P2.7 and P2CONL for P2.0-P2.3. A reset clears the P 2 CONH and P2CONL registers to " 00 H ", configuring all pins to input mode. You use control registers settings to select input or output mode (push-pull) and enable the alternative functions.

When programming the port, please remember that any alternative peripheral I/O function you configure using the port 2 control registers must also be enabled in the associated peripheral module.

When you select output mode, a push-pull circuit is configured. In input mode, three different selections are available:

- Schmitt trigger input and interrupt generation on falling signal edges.
- Schmitt trigger input and interrupt generation on rising signal edges.
- Schmitt trigger input with pull up resister and interrupt generation on falling signal edges.

Port 2 Interrupt Enable and Pending Registers (P2INT, P2INTPND)

To process external interrupts at the port 2 pins, two additional control registers are provided: the port 2 interrupt enable register P2INT (ECH, set 1, bank 0) and the port 2 interrupt pending register P2INTPND (EDH, set 1, bank 0).

The port 2 interrupt pending register P2INTPND lets you check for interrupt pending conditions and clear the pending condition when the interrupt service routine has been initiated. The application program detects interrupt requests by polling the P2INTPND register at regular intervals.

When the interrupt enable bit of any port 4 pin is " 1 ", a rising or falling signal edge at that pin will generate an interrupt request. The corresponding P2INTPND bit is then automatically set to " 1 " and the IRQ level goes low to signal the CPU that an interrupt request is waiting. When the CPU acknowledges the interrupt request, application software must clear the pending condition by writing a " 0 " to the corresponding P2INTPND bit.

Port 2 Control Register, High Byte (P2CONH)
EAH, Set1, Bank0, R/W, Reset value="00"

MSB | .7 | .6 | .5 | .4 | .3 | .2 | .1 | .0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

[.7-.6] P2.7/INT7 Configuration Bits

$00=$ Input mode with pull-up; falling edge interrupt (INT7)
01 = Input mode; falling edge interrupt (INT7)
$10=$ Input mode; rising edge interrupt (INT7)
11 = Push-pull output mode

[.5-.4] P2.6/INT6 Configuration Bits

$00=$ Input mode with pull-up; falling edge interrupt (INT6)
01 = Input mode; falling edge interrupt (INT6)
$10=$ Input mode; rising edge interrupt (INT6)
11 = Push-pull output mode
[.3-.2] P2.5/INT5 Configuration Bits
$00=$ Input mode with pull-up; falling edge interrupt (INT5)
01 = Input mode; falling edge interrupt (INT5)
10 = Input mode; rising edge interrupt (INT5)
11 = Push-pull output mode

[.1-.0] P2.4/INT4 Configuration Bits

$00=$ Input mode with pull-up; falling edge interrupt (INT4)
01 = Input mode; falling edge interrupt (INT4)
10 = Input mode; rising edge interrupt (INT4)
11 = Push-pull output mode

Figure 9-5. Port 2 High-Byte Control Register (P2CONH)

Port 2 Control Register, Low Byte (P2CONL)
EBH, Set1, Bank0, R/W, Reset value="00"

[.7-.6] P2.3/INT3 Configuration Bits

$00=$ Input mode with pull-up; falling edge interrupt (INT3)
01 = Input mode; falling edge interrupt (INT3)
$10=$ Input mode; rising edge interrupt (INT3)
11 = Push-pull output mode

[.5-.4] P2.2/INT2 Configuration Bits

$00=$ Input mode with pull-up; falling edge interrupt (INT2)
01 = Input mode; falling edge interrupt (INT2)
$10=$ Input mode; rising edge interrupt (INT2)
11 = Push-pull output mode
[.3-.2] P2.1/INT1 Configuration Bits
$00=$ Input mode with pull-up; falling edge interrupt (INT1)
01 = Input mode; falling edge interrupt (INT1)
$10=$ Input mode; rising edge interrupt (INT1)
11 = Push-pull output mode
[.1-.0] P2.0/INTO Configuration Bits
$00=$ Input mode with pull-up; falling edge interrupt (INTO)
01 = Input mode; falling edge interrupt (INTO)
$10=$ Input mode; rising edge interrupt (INTO)
11 = Push-pull output mode

Figure 9-6. Port 2 Low-Byte Control Register (P2CONL)

Port 2 Interrupt Pending Register (P2INTPND)
EDH, Set1, Bank0, R/W, Reset value="00"

.7	.6	.5	.4	.3	.2	.1	.0

[.7] P2.7/PND7, Interrupt Pending Bit
$0=$ No interrupt pending (when read) / Pending bit clear (when write)
1 = Interrupt is pending (when read) / No effect (when write)
[.6] P2.6/PND6, Interrupt Pending Bit
$0=$ No interrupt pending (when read) / Pending bit clear (when write)
1 = Interrupt is pending (when read) / No effect (when write)
[.5] P2.5/PND5, Interrupt Pending Bit
$0=$ No interrupt pending (when read) / Pending bit clear (when write)
$1=$ Interrupt is pending (when read) / No effect (when write)
[.4] P2.4/PND4, Interrupt Pending Bit
$0=$ No interrupt pending (when read) / Pending bit clear (when write)
1 = Interrupt is pending (when read) / No effect (when write)
[.3] P2.3/PND3, Interrupt Pending Bit
$0=$ No interrupt pending (when read) / Pending bit clear (when write)
$1=$ Interrupt is pending (when read) / No effect (when write)
[.2] P2.2/PND2, Interrupt Pending Bit
$0=$ No interrupt pending (when read) / Pending bit clear (when write)
1 = Interrupt is pending (when read) / No effect (when write)
[.1] P2.1/PND1, Interrupt Pending Bit
$0=$ No interrupt pending (when read) / Pending bit clear (when write)
1 = Interrupt is pending (when read) / No effect (when write)
[.0] P2.0/PND0, Interrupt Pending Bit
$0=$ No interrupt pending (when read) / Pending bit clear (when write)
1 = Interrupt is pending (when read) / No effect (when write)

Figure 9-7. Port 2 Interrupt Pending Register (P2INTPND)

Figure 9-8. Port 2 Interrupt Control Register (P2INT)

PORT 3

Port 3 is an 8 -bit I/O port that can be used for general-purpose digital I/O. The pins are accessed directly by writing or reading the port 3 data register, P3 at location E3H in set 1, bank 0. P3.0-P3.7 can serve as inputs, outputs (push pull) or you can configure the following alternative functions:

- General-purpose digital I/O
- Alternative function: ADC0- ADC7

Port 3 Control Register (P3CONH, P3CONL)

Port 3 has two 8-bit control registers: P3CONH for P3.4-P3.7 and P3CONL for P3.0-P3.3. A reset clears the P2CONH and P2CONL registers to " 00 H ", configuring all pins to input mode. You use control registers settings to select input or output mode (push-pull) and enable the alternative functions.

When programming the port, please remember that any alternative peripheral I/O function you configure using the port 3 control registers must also be enabled in the associated peripheral module.

Port 3 Control Register, High Byte (P3CONH)
EEH, Set1, Bank0, R/W, Reset value="00"
MSB

.7	.6	.5	.4	.3	.2	.1	.0

[.7-.6] P3.7/ADC7 Configuration Bits
$00=$ Input mode with pull-up
01 = Input mode
10 = Push-pull output mode
11 = Alternative function mode: ADC7 input
[.5-.4] P3.6/ADC6 Configuration Bits
$00=$ Input mode with pull-up
01 = Input mode
$10=$ Push-pull output mode
11 = Alternative function mode: ADC6 input
[.3-2] P3.5/ADC5 Configuration Bits
$00=$ Input mode with pull-up
01 = Input mode
10 = Push-pull output mode
11 = Alternative function mode: ADC5 input
[.1-.0] P3.4/ADC4 Configuration Bits
$00=$ Input mode with pull-up
01 = Input mode
$10=$ Push-pull output mode
11 = Alternative function mode: ADC4 input

Figure 9-9. Port 3 High-Byte Control Register (P3CONH)

Port 3 Control Register, Low Byte (P3CONL)
EFH, Set1, Bank0, R/W, Reset value="00"
MSB

.7	.6	.5	.4	.3	.2	.1	.0

[.7-.6] P3.3/ADC3 Configuration Bits
$00=$ Input mode with pull-up
01 = Input mode
10 = Push-pull output mode
11 = Alternative function mode: ADC3 input
[.5-.4] P3.2/ADC2 Configuration Bits
00 = Input mode with pull-up
01 = Input mode
$10=$ Push-pull output mode
11 = Alternative function mode: ADC2 input
[.3-.2] P3.1/ADC1 Configuration Bits
00 = Input mode with pull-up
01 = Input mode
$10=$ Push-pull output mode
11 = Alternative function mode: ADC1 input
[.1-0] P3.0/ADC0 Configuration Bits
00 = Input mode with pull-up
01 = Input mode
10 = Push-pull output mode
11 = Alternative function mode: ADC0 input

Figure 9-10. Port 3 Low-Byte Control Register (P3CONL)

PORT 4

Port 4 is a 6-bit I/O port that you can use two ways:

- General-purpose digital I/O
- Alternative function: INT8- INT10, TBPWM

Port 4 is accessed directly by writing or reading the port 4 data register, P 4 at location E 4 H in set 1 , bank 0 .

Port 4 Control Register (P4CONH, P4CONL)

Port 4 pins are configured individually by bit-pair settings in two control registers located in set 1, bank 0 : P4CONL (low byte, F1H) and P4CONH (high byte, F0H).

When you select output mode, a push-pull circuit is configured. In input mode, three different selections are available:

- Schmitt trigger input and interrupt generation on falling signal edges.
- Schmitt trigger input and interrupt generation on rising signal edges.
- Schmitt trigger input with pull up resister and interrupt generation on falling signal edges.

Port 4 Interrupt Enable and Pending Registers (P4INT, P4INTPND)

To process external interrupts at the port 4 pins, two additional control registers are provided: the port 4 interrupt enable register P4INT (F2H, set 1, bank 0) and the port 4 interrupt pending register P4INTPND (F3H, set 1, bank 0).

The port 4 interrupt pending register P4INTPND lets you check for interrupt pending conditions and clear the pending condition when the interrupt service routine has been initiated. The application program detects interrupt requests by polling the P4INTPND register at regular intervals.

When the interrupt enable bit of any port 4 pin is " 1 ", a rising or falling signal edge at that pin will generate an interrupt request. The corresponding P4INTPND bit is then automatically set to "1" and the IRQ level goes low to signal the CPU that an interrupt request is waiting. When the CPU acknowledges the interrupt request, application software must clear the pending condition by writing a " 0 " to the corresponding P4INTPND bit.

Port 4 Control Register, High Byte (P4CONH)
FOH, Set1, Bank0, R/W, Reset value="00"
MSB

.7	.6	.5	.4	.3	.2	.1	.0
LSB							

[.7-.4] Not used (must keep always 0)
[.3-.2] P4.5 Configuration Bits
$00=$ Input mode with pull-up
01 = Input mode
$1 \mathrm{X}=$ Push-pull output mode
[.1-.0] P4.4 Configuration Bits
$00=$ Input mode with pull-up
01 = Input mode
$1 \mathrm{X}=$ Push-pull output mode

Figure 9-11. Port 4 High-Byte Control Register (P4CONH)

Port 4 Control Register, Low Byte (P4CONL)
F1H, Set1, Bank0, R/W, Reset value="00"

[.7-.6] P4.3/TBPWM Configuration Bits
$00=$ Input mode with pull-up
01 = Input mode
$10=$ Push-pull output mode
11 = Alternative function mode: TBPWM output
[.5-.4] P4.2/INT10 Configuration Bits
$00=$ Input mode with pull-up; falling edge interrupt (INT10)
01 = Input mode; falling edge interrupt (INT10)
10 = Input mode; rising edge interrupt (INT10)
11 = Push-pull output mode
[.3-.2] P4.1/INT9 Configuration Bits
$00=$ Input mode with pull-up; falling edge interrupt (INT9)
01 = Input mode; falling edge interrupt (INT9)
$10=$ Input mode; rising edge interrupt (INT9)
11 = Push-pull output mode

[.1-.0] P4.0/INT8 Configuration Bits

$00=$ Input mode with pull-up; falling edge interrupt (INT8)
01 = Input mode; falling edge interrupt (INT8)
10 = Input mode; rising edge interrupt (INT8)
11 = Push-pull output mode

Figure 9-12. Port 4 Low-Byte Control Register (P4CONL)

Port 4 Interrupt Pending Register (P4INTPND)
F3H, Set1, Bank0, R/W, Reset value="00"

MSB	.7	.6	.5	.4	.3	.2	.1
LSB							

[.7-.3] Not used (must keep always 0)
[.2] P4.2/PND10, Interrupt Pending Bit
$0=$ No interrupt pending (when read) / Pending bit clear (when write)
1 = Interrupt is pending (when read) / No effect (when write)
[.1] P4.1/PND9, Interrupt Pending Bit
$0=$ No interrupt pending (when read) / Pending bit clear (when write)
1 = Interrupt is pending (when read) / No effect (when write)
[.0] P4.0/PND8, Interrupt Pending Bit
$0=$ No interrupt pending (when read) / Pending bit clear (when write)
$1=$ Interrupt is pending (when read) / No effect (when write)

Figure 9-13. Port 4 Interrupt Pending Register (P4INTPND)

Port 4 Interrupt Control Register (P4INT)
F2H, Set1, Bank0, R/W, Reset value="00"

MSB | .7 | .6 | .5 | .4 | .3 | .2 | .1 | .0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

[.7-.3] Not used (must keep always 0)
[.2] P4.2 External Interrupt (INT10) Enable Bit
0 = Disable interrupt
1 = Enable interrupt
[.1] P4.1 External Interrupt (INT9) Enable Bit
0 = Disable interrupt
1 = Enable interrupt
[.0] P4.0 External Interrupt (INT8) Enable Bit
$0=$ Disable interrupt
1 = Enable interrupt

Figure 9-14. Port 4 Interrupt Control Register (P4INT)

10
 BASIC TIMER

OVERVIEW

BASIC TIMER (BT)

You can use the basic timer (BT) in two different ways:

- As a watchdog timer to provide an automatic reset mechanism in the event of a system malfunction.
- To signal the end of the required oscillation stabilization interval after a reset or a Stop mode release.

The functional components of the basic timer block are:

- Clock frequency divider (fxx divided by 4096, 1024 or 128) with multiplexer
- 8-bit basic timer counter, BTCNT (set 1, bank 0, FDH, read-only)
- Basic timer control register, BTCON (set 1, D3H, read/write)

BASIC TIMER CONTROL REGISTER (BTCON)

The basic timer control register, BTCON, is used to select the input clock frequency, to clear the basic timer counter and frequency dividers, and to enable or disable the watchdog timer function. It is located in set 1, address D3H, and is read/write addressable using register addressing mode.

A reset clears BTCON to ' 00 H '. This enables the watchdog function and selects a basic timer clock frequency of $\mathrm{fXX} / 4096$. To disable the watchdog function, write the signature code '1010B' to the basic timer register control bits BTCON.7-BTCON.4.

The 8 -bit basic timer counter, BTCNT (set 1, bank 0, FDH), can be cleared at any time during normal operation by writing a "1" to BTCON.1. To clear the frequency dividers, write a "1" to BTCON.0.

Figure 10-1. Basic Timer Control Register (BTCON)

BASIC TIMER FUNCTION DESCRIPTION

Watchdog Timer Function

You can program the basic timer overflow signal (BTOVF) to generate a reset by setting BTCON.7-BTCON. 4 to any value other than "1010B". (The "1010B" value disables the watchdog function.) A reset clears BTCON to "00H", automatically enabling the watchdog timer function. A reset also selects the CPU clock (as determined by the current CLKCON register setting), divided by 4096, as the BT clock.

The CPU is reset whenever a basic timer counter overflow occurs, During normal operation, the application program must prevent the overflow, and the accompanying reset operation, from occurring. To do this, the BTCNT value must be cleared (by writing a "1" to BTCON.1) at regular intervals.

If a system malfunction occurs due to circuit noise or some other error condition, the BT counter clear operation will not be executed and a basic timer overflow will occur, initiating a reset. In other words, during the normal operation, the basic timer overflow loop (a bit 7 overflow of the 8 -bit basic timer counter, BTCNT) is always broken by a BTCNT clear instruction. If a malfunction does occur, a reset is triggered automatically.

Oscillation Stabilization Interval Timer Function

You can also use the basic timer to program a specific oscillation stabilization interval following a reset or when Stop mode has been released by an external interrupt.

In Stop mode, whenever a reset or an external interrupt occurs, the oscillator starts. The BTCNT value then starts increasing at the rate of $\mathrm{fxx} / 4096$ (for reset), or at the rate of the preset clock source (for an external interrupt). When BTCNT. 4 overflows, a signal is generated to indicate that the stabilization interval has elapsed and to gate the clock signal off to the CPU so that it can resume normal operation.

In summary, the following events occur when stop mode is released:

1. During stop mode, a power-on reset or an interrupt occurs to trigger the Stop mode release and oscillation starts.
2. If a power-on reset occurred, the basic timer counter will increase at the rate of $\mathrm{fxx} / 4096$. If an external interrupt is used to release stop mode, the BTCNT value increases at the rate of the preset clock source.
3. Clock oscillation stabilization interval begins and continues until bit 4 of the basic timer counter overflows.
4. When a BTCNT. 4 overflow occurs, normal CPU operation resumes.

Figure 10-2. Basic Timer Block Diagram

11
 8-BIT TIMER A/B

8-BIT TIMER A

OVERVIEW

The 8-bit timer A is an 8-bit general-purpose timer/counter. Timer A has three operating modes, you can select one of them using the appropriate TACON setting:

- Interval timer mode (Toggle output at TAOUT pin)
- Capture input mode with a rising or falling edge trigger at the TACAP pin
- PWM mode (TAPWM)

Timer A has the following functional components:

- Clock frequency divider (fxx divided by 1024, 256, or 64) with multiplexer
- External clock input pin (TACK)
- 8-bit counter (TACNT), 8-bit comparator, and 8-bit reference data register (TADATA)
- I/O pins for capture input (TACAP) or PWM or match output (TAOUT)
- Timer A overflow interrupt (IRQ1, vector C 2 H) and match/capture interrupt (IRQ1, vector COH) generation
- Timer A control register, TACON (set 1, bank1, E1H, read/write)

FUNCTION DESCRIPTION

Timer A Interrupts (IRQ1, Vectors COH and C2H)

The timer A module can generate two interrupts: the timer A overflow interrupt (TAOVF), and the timer A match/ capture interrupt (TAINT). TAOVF is interrupt level IRQ1, vector C2H. TAINT also belongs to interrupt level IRQ1, but is assigned the separate vector address, COH .

A timer A overflow interrupt pending condition is automatically cleared by hardware when it has been serviced. A timer A match/capture interrupt, TAINT pending condition is also cleared by hardware when it has been serviced.

Interval Timer Function

The timer A module can generate an interrupt: the timer A match interrupt (TAINT). TAINT belongs to interrupt level IRQ1, and is assigned the separate vector address, COH .

When the timer A match interrupt occurs and is serviced by the CPU, the pending condition is cleared automatically by hardware.

In interval timer mode, a match signal is generated and TAOUT is toggled when the counter value is identical to the value written to the timer A reference data register, TADATA. The match signal generates a timer A match interrupt (TAINT, vector COH) and clears the counter.

If, for example, you write the value 10 H to TADATA and OAH to TACON, the counter will increment until it reaches 10 H . At this point, the Timer A interrupt request is generated, the counter value is reset, and counting resumes.

Pulse Width Modulation Mode

Pulse width modulation (PWM) mode lets you program the width (duration) of the pulse that is output at the TAOUT pin. As in interval timer mode, a match signal is generated when the counter value is identical to the value written to the Timer A data register, TADATA. In PWM mode, however, the match signal does not clear the counter. Instead, it runs continuously, overflowing at FFH, and then continues incrementing from 00 H .

Although you can use the match signal to generate a timer A overflow interrupt, interrupts are not typically used in PWM-type applications. Instead, the pulse at the TAOUT pin is held to Low level as long as the reference data value is less than or equal to (\leq) the counter value and then the pulse is held to High level for as long as the data value is greater than (>) the counter value. One pulse width is equal to tCLK $\cdot 256$.

Capture Mode

In capture mode, a signal edge that is detected at the TACAP pin opens a gate and loads the current counter value into the Timer A data register. You can select rising or falling edges to trigger this operation.

Timer A also gives you capture-input source: the signal edge at the TACAP pin. You select the capture input by setting the value of the Timer A capture input selection bit in the port 0 control register, POCONH, (set 1, bank 0, E6H). When P0CONH.7-. 6 is ' 00 ' or ' 01 ', the TACAP input or normal input is selected. When P0CONH. $7-.6$ is set to 1 X , normal push-pull output is selected.

Both kinds of timer A interrupts can be used in capture mode: the timer A overflow interrupt is generated whenever a counter overflow occurs; the timer A match/capture interrupt is generated whenever the counter value is loaded into the Timer A data register.

By reading the captured data value in TADATA, and assuming a specific value for the timer A clock frequency, you can calculate the pulse width (duration) of the signal that is being input at the TACAP pin.

TIMER A CONTROL REGISTER (TACON)

You use the timer A control register, TACON, to:

- Select the timer A operating mode (interval timer, capture mode and PWM mode)
- Select the timer A input clock frequency
- Clear the timer A counter, TACNT
- Enable the timer A overflow interrupt or timer A match/capture interrupt
- Clear timer A match/capture interrupt pending conditions

TACON is located in set 1, Bank 1 at address E 1 H , and is read/write addressable using Register addressing mode. A reset clears TACON to ' 00 H '. This sets timer A to normal interval timer mode, selects an input clock frequency of $\mathrm{fxx} / 1024$, and disables all timer A interrupts. You can clear the timer A counter at any time during normal operation by writing a "1" to TACON.3.

The timer A overflow interrupt (TAOVF) is interrupt level IRQ1 and has the vector address C 2 H . When a timer A overflow interrupt occurs and is serviced by the CPU, the pending condition is cleared automatically by hardware.

To enable the timer A match/capture interrupt (IRQ1, vector C0H), you must write TACON. 1 to "1". To generate the exact time interval, you should write TACON. 3 and .0 to " 1 ", which cleared counter and interrupt pending bit. When interrupt service routine is served, the pending condition must be cleared by software by writing a ' 0 ' to the interrupt pending bit (TINTPND. 0 or TINTPND.1).

Figure 11-1. Timer A Control Register (TACON)

SMMSUNG

BLOCK DIAGRAM

Figure 11-2. Timer A Functional Block Diagram

8-BIT TIMER B

OVERVIEW

The S3C84E5/C84E9/P84E9 micro-controller has an 8-bit timer called timer B. Timer B, which can be used to generate the carrier frequency of a remote controller signal. Also, it can be used as the programmable buzz signal generator that makes a sound with a various frequency from 200 Hz to 20 kHz . These various frequencies can be used to generate a melody sound.

Timer B has two functions:

- As a normal interval timer, generating a timer B interrupt at programmed time intervals.
- To generate a programmable carrier pulse for a remote control signal at P4.3.

BLOCK DIAGRAM

NOTE: In case of setting TBCON.5-. 4 at '10', the value of the TBDATAL register is loaded into the 8 -bit counter when the operation of the timer B starts. And then if a underflow occurs in the counter, the value of the TBDATAH register is loaded into the value of the 8 -bit counter. However, if the next borrow occurs, the value of the TBDATAL register is loaded into the value of the 8 -bit counter. To output TBPWM as carrier wave, you have to set P4CONL. 7 -. 6 as "11".

Figure 11-3. Timer B Functional Block Diagram

simsunf

TIMER B CONTROL REGISTER (TBCON)

Figure 11-4. Timer B Control Register (TBCON)

Figure 11-5. Timer B Data Registers (TBDATAH, TBDATAL)

TIMER B PULSE WIDTH CALCULATIONS

To generate the above repeated waveform consisted of low period time, $\mathrm{t}_{\text {LOW }}$, and high period time, $\mathrm{t}_{\mathrm{HIGH}}$.
When T-FF $=0$,
$t_{\text {LOW }}=($ TBDATAL +1$) \times 1 / \mathrm{fx}, 0 \mathrm{H}<$ TBDATAL $<100 \mathrm{H}$, where $\mathrm{fx}=$ The selected clock.
$\mathrm{t}_{\mathrm{HIGH}}=($ TBDATAH +1$) \times 1 / \mathrm{fx}, 0 \mathrm{H}<$ TBDATAH $<100 \mathrm{H}$, where $\mathrm{fx}=$ The selected clock.
When T-FF = 1 ,
$t_{\text {LOW }}=($ TBDATAH +1$) \times 1 / \mathrm{fx}, 0 \mathrm{H}<$ TBDATAH $<100 \mathrm{H}$, where $\mathrm{fx}=$ The selected clock.
$\mathrm{t}_{\text {HIGH }}=($ TBDATAL +1$) \times 1 / \mathrm{fx}, 0 \mathrm{H}<$ TBDATAL $<100 \mathrm{H}$, where $\mathrm{fx}=$ The selected clock.

To make $\mathrm{t}_{\text {LOW }}=24$ us and $\mathrm{t}_{\mathrm{HIGH}}=15 \mathrm{us} . \mathrm{f}_{\mathrm{OSC}}=4 \mathrm{MHz}, \mathrm{fx}=4 \mathrm{MHz} / 4=1 \mathrm{MHz}$
When T-FF $=0$,
$t_{\text {LOW }}=24$ us $=($ TBDATAL +1$) / f x=($ TBDATAL +1$) \times 1 u s$, TBDATAL $=23$.
$t_{\text {HIGH }}=15$ us $=($ TBDATAH +1$) / f x=($ TBDATAH +1$) \times 1$ us, TBDATAH $=14$.
When T-FF $=1$,
$t_{\text {HIGH }}=15$ us $=($ TBDATAL +1$) / f x=($ TBDATAL +1$) \times 1 u s$, TBDATAL $=14$.
$t_{\text {LOW }}=24$ us $=($ TBDATAH +1$) / \mathrm{fx}=($ TBDATAH +1$) \times 1 \mathrm{us}$, TBDATAH $=23$.

Figure 11-6. Timer B Output Flip Flop Waveforms in Repeat Mode

PROGRAMMING TIP - To Generate 38 kHz, 1/3duty signal through P4.3

This example sets Timer B to the repeat mode, sets the oscillation frequency as the Timer B clock source, and TBDATAH and TBDATAL to make a $38 \mathrm{kHz}, 1 / 3$ Duty carrier frequency. The program parameters are:

37.9 kHz 1/3 Duty

- Timer B is used in repeat mode
- Oscillation frequency is $16 \mathrm{MHz}(0.0625 \mu \mathrm{~s}), \mathrm{fx}=\mathrm{fxx} / 4=4 \mathrm{MHz}(0.25 \mu \mathrm{~s})$
— TBDATAH $=8.795 \mu \mathrm{~s} / 0.25 \mu \mathrm{~s}=35.18$, TBDATAL $=17.59 \mu \mathrm{~s} / 0.25 \mu \mathrm{~s}=70.36$
- Set P4.3 to TBPWM mode.
ORG 0100H ; Reset address

START DI
-
-
LD TBDATAL,\#(35-1) ; Set $17.5 \mu \mathrm{~s}$

LD TBDATAH,\#(70-1) ; Set $8.75 \mu \mathrm{~s}$
LD TBCON,\#00100111B ; Clock Source \leftarrow fxx/4
; Disable Timer B interrupt.
; Select repeat mode for Timer B.
; Start Timer B operation.
; Set Timer B Output flip-flop (T-FF) high.

LD P4CONLH,\#03H ; Set P4.3 to TBPWM mode.
; This command generates $38 \mathrm{kHz}, 1 / 3$ duty pulse signal through P4.3.

PROGRAMMING TIP - To generate a one pulse signal through P4.3

This example sets Timer B to the one shot mode, sets the oscillation frequency as the Timer B clock source, and TBDATAH and TBDATAL to make a 40μ s width pulse. The program parameters are:

- Timer B is used in one shot mode
- Oscillation frequency is 4 MHz ($\mathrm{fx}=1 / 4$ clock $=1 \mu \mathrm{~s}$)
- TBDATAH $=40 \mu \mathrm{~s} / 1 \mu \mathrm{~s}=40$, TBDATAL $=1$
- Set P4.3 to TBPWM mode

ORG	0100H	Reset address
START		
	TBDATAH,\# (40-1)	Set $40 \mu \mathrm{~s}$
	TBDATAL,\# 1	Set any value except 00H
	TBCON,\#00010001B	Clock Source $\leftarrow \mathrm{fxx} / 4$
		Disable Timer B interrupt.
		Select one shot mode for Timer B.
		Stop Timer B operation.
		Set Timer B output flip-flop (T-FF) high
	P4CONL, \#03H	Set P4.3 to TBPWM mode.
PULSE_OUT:LD	TBCON,\#00000101B	Start Timer B operation
		to make the pulse at this point.
		After the instruction is executed, $0.75 \mu \mathrm{~s}$ is required
		before the falling edge of the pulse starts.

PROGRAMMING TIP — Using the Timer A

ORG	0000 h
VECTOR	0 OCOh,TAMC_INT
VECTOR	$002 h, T A O V _I N T$
ORG	0100 h

INITIAL:

LD	SYM,\#00h	; Disable Global/Fast interrupt \rightarrow SYM
LD	IMR,\#00000010b	$;$ Enable IRQ1 interrupt
LD	SPH,\#00000000b	Set stack area
LD	SPL,\#00000000b	
LD	BTCON,\#10100011b	$;$ Disable watch-dog
LD	P0CONH,\#0C0H	$;$ Enable TAOUT output
SB1		
LD	TADATA,\#80h	
LD	TACON,\#01001010b	Match interrupt enable
		6.55 ms duration (10 MHz x'tal)

El
MAIN:

```
-
MAIN ROUTINE
```

-

JR T,MAIN

TAMC_INT:

Interrupt service routine
-

IRET
TAOV_INT:
Interrupt service routine
-
IRET
.END

PROGRAMMING TIP — Using the Timer B

ORG	0000 h
VECTOR	OBEh,TBUN_INT

ORG 0100h
INITIAL:

LD	SYM,\#00h	$;$ Disable Global/Fast interrupt
LD	IMR,\#00000001b	$;$ Enable IRQ0 interrupt
LD	SPH,\#00000000b	$;$ Set stack area
LD	SPL,\#00000000b	
LD	BTCON,\#10100011b	$;$ Disable Watch-dog
LD	P4CONL,\#00000011b	$;$ Enable TBPWM output
LD	TBDATAH,\#80h	
LD	TBDATAL,\#80h	
LD	TBCON,\#11101110b	Enable interrupt, fxx/256, Repeat
		Duration 6.605 ms (10 MHz x'tal)
EI		

MAIN:
-
-
MAIN ROUTINE
-
-
JR T,MAIN
TBUN_INT:

```
•
\bullet
Interrupt service routine
-
\bullet
\bullet
.END
```


12
 16-BIT TIMER 1(0,1)

OVERVIEW

The S3C84E5/C84E9/P84E9 has two 16-bit timer/counters. The 16-bit timer 1(0,1) is an 16-bit general-purpose timer/counter. Timer $1(0,1)$ has three operating modes, one of which you select using the appropriate T1CON0, T1CON1 setting is

- Interval timer mode (Toggle output at T1OUT0, T1OUT1 pin)
- Capture input mode with a rising or falling edge trigger at the T1CAP0, T1CAP1 pin
- PWM mode (T1PWM0, T1PWM1); PWM output shares their output port with T1OUT0, T1OUT1 pin

Timer $1(0,1)$ has the following functional components:

- Clock frequency divider (fxx divided by 1024, 256, 64, 8, 1) with multiplexer
- External clock input pin (T1CK0, T1CK1)
- A 16-bit counter (T1CNTH0/L0, T1CNTH1/L1), a 16-bit comparator, and two 16-bit reference data register (T1DATAH0/L0, T1DATAH1/L1)
- I/O pins for capture input (T1CAP0, T1CAP1), or match output (T1OUT0, T1OUT1)
- Timer 1(0) overflow interrupt (IRQ2, vector C6H) and match/capture interrupt (IRQ2, vector C4H) generation
— Timer 1(1) overflow interrupt (IRQ2, vector CAH) and match/capture interrupt (IRQ2, vector C8H) generation
- Timer 1(0) control register, T1CON0 (set 1, E8H, Bank 1, read/write)
- Timer 1(1) control register, T1CON1 (set 1, E9H, Bank 1, read/write)

FUNCTION DESCRIPTION

Timer 1(0,1) Interrupts (IRQ2, Vectors C4H, C6H, C8H and CAH)

The timer $1(0)$ module can generate two interrupts, the timer $1(0)$ overflow interrupt (T1OVF0), and the timer $1(0)$ match/capture interrupt (T1INT0). T1OVF0 is interrupt level IRQ2, vector C6H. T1INT0 also belongs to interrupt level IRQ2, but is assigned the separate vector address, C 4 H .
A timer $1(0)$ overflow interrupt pending condition is automatically cleared by hardware when it has been serviced. A timer $1(0)$ match/capture interrupt, T1INT0 pending condition is also cleared by hardware when it has been serviced.

The timer 1(1) module can generate two interrupts, the timer 1(1) overflow interrupt (T1OVF1), and the timer 1(1) match/capture interrupt (T1INT1). T1OVF1 is interrupt level IRQ2, vector CAH. T1INT1 also belongs to interrupt level IRQ2, but is assigned the separate vector address, C8H.
A timer 1(1) overflow interrupt pending condition is automatically cleared by hardware when it has been serviced. A timer 1(1) match/capture interrupt, T1INT1 pending condition is also cleared by hardware when it has been serviced.

Interval Mode (match)

The timer $1(0)$ module can generate an interrupt: the timer $1(0)$ match interrupt (T1INT0). T1INT0 belongs to interrupt level IRQ2, and is assigned the separate vector address, C 4 H . In interval timer mode, a match signal is generated and T1OUT0 is toggled when the counter value is identical to the value written to the Timer 1 reference data registers, T1DATAH0 and T1DATAL0. The match signal generates a timer $1(0)$ match interrupt (T1INT0, vector C4H) and clears the counter value.

The timer 1(1) module can generate an interrupt: the timer 1(1) match interrupt (T1INT1). T1INT1 belongs to interrupt level IRQ2, and is assigned the separate vector address, C8H. In interval timer mode, a match signal is generated and T1OUT1 is toggled when the counter value is identical to the value written to the Timer 1 reference data register, T1DATAH1 and T1DATAL1. The match signal generates a timer 1(1) match interrupt (T1INT1, vector C8H) and clears the counter value.

Capture Mode

In capture mode for timer $1(0)$, a signal edge that is detected at the T1CAP0 pin opens a gate and loads the current counter value into the timer 1 data registers (T1DATAH0, T1DATAL0 for rising edge, or falling edge). You can select rising or falling edge to trigger this operation. The timer $1(0)$ also gives you capture input source, the signal edge at the T1CAP0 pin. You select the capture input by setting the value of the timer $1(0)$ capture input selection bit in the port 0 control register high, P0CONH, (set 1 bank0, E6H).
Both kinds of timer $1(0)$ interrupts (T1OVF0, T1INT0) can be used in capture mode, the timer $1(0)$ overflow interrupt is generated whenever a counter overflow occurs, the timer $1(0)$ capture interrupt is generated whenever the counter value is loaded into the timer 1 data register.
By reading the captured data value in T1DATAH0, T1DATALO, and assuming a specific value for the timer 1(0) clock frequency, you can calculate the pulse width (duration) of the signal that is being input at the T1CAP0 pin.

In capture mode for Timer 1(1), a signal edge that is detected at the T1CAP1 pin opens a gate and loads the current counter value into the timer 1 data register (T1DATAH1, T1DATAL1 for rising edge, or falling edge). You can select rising or falling edges to trigger this operation. The timer 1(1) also gives you capture input source, the signal edge at the T1CAP1 pin. You select the capture input by setting the value of the timer 1(1) capture input selection bit in the port 0 control register low, P0CONL, (set 1 bank0, E7H).
Both kinds of timer 1(1) interrupts (T1OVF1, T1INT1) can be used in capture mode, the timer 1(1) overflow interrupt is generated whenever a counter overflow occurs, the timer 1(1) capture interrupt is generated whenever the counter value is loaded into the timer 1 data register.
By reading the captured data value in T1DATAH1, T1DATAL1, and assuming a specific value for the timer 1(1) clock frequency, you can calculate the pulse width (duration) of the signal that is being input at the T1CAP1 pin.

PWM Mode

Pulse width modulation (PWM) mode lets you program the width (duration) of the pulse that is output at the T1OUT0, T1OUT1 pin. As in interval timer mode, a match signal is generated when the counter value is identical to the value written to the timer $1(0,1)$ data registers. In PWM mode, however, the match signal does not clear the counter but can generate a match interrupt. Instead, it runs continuously, overflowing at FFFFH, and then continuous increasing from 0000 H . Whenever an overflow occur, an overflow (T1OVF0,1) interrupt can be generated.

Although you can use the match or overflow interrupts in the PWM mode, these interrupts are not typically used in PWM-type applications. Instead, the pulse at the T1OUT0, T1OUT1 pin is held to low level as long as the reference data value is less than or equal to(\leq) the counter value and then the pulse is held to high level for as long as the data value is greater than $(>)$ the counter value. One pulse width is equal to $t_{\text {clk. }}$

TIMER 1(0,1) CONTROL REGISTER (T1CONO, T1CON1)

You use the timer $1(0,1)$ control register, T1CON0, T1CON1, to:

- Select the timer $1(0,1)$ operating mode (Interval timer, Capture mode, PWM mode)
- Select the timer $1(0,1)$ input clock frequency
- Clear the timer $1(0,1)$ counter, T1CNTH0/L0, T1CNTH1/L1
- Enable the timer 1 $(0,1)$ overflow interrupt
- Enable the timer 1(0,1) match/capture interrupt

T1CON0 is located in set 1 and Bank 1 at address E8H, and is read/write addressable using Register addressing mode. T1CON1 is located in set 1 and Bank 1 at address E9H, and is read/write addressable using Register addressing mode.

A reset clears T1CON0, T1CON1 to ' 00 H '. This sets timer $1(0,1)$ to normal interval timer mode, selects an input clock frequency of $f x x / 1024$, and disables all timer $1(0,1)$ interrupts. To disable the counter operation, please set $\operatorname{T1CON}(0,1) \cdot 7-.5$ to 111 B . You can clear the timer $1(0,1)$ counter at any time during normal operation by writing a " 1 " to $\operatorname{T1CON}(0,1) .3$.
The timer $1(0)$ overflow interrupt (T1OVF0) is interrupt level IRQ2 and has the vector address C 6 H . And, the timer 1(1) overflow interrupt (T1OVF1) is interrupt level IRQ2 and has the vector address CAH.
To generate the exact time interval, you should write " 1 " to $\operatorname{T1CON}(0,1) .2$ and clear appropriate pending bits of the TINTPND register.

To detect a match/capture or overflow interrupt pending condition when T1INT0, T1INT1 or T1OVF0, T1OVF1 is disabled, the application program should poll the pending bit TINTPND register, bank 1, address EOH.
When a " 1 " is detected, a timer $1(0,1)$ match/capture or overflow interrupt is pending. When the sub-routine has been serviced, the pending condition must be cleared by software by writing a " 0 " to the interrupt pending bit. If interrupts (match/capture or overflow) are enabled, the pending bit is cleared automatically by hardware.

Timer 1 Control Register
(T1CON0) E8H, Set 1, Bank 1, R/W (T1CON1) E9H, Set 1, Bank 1, R/W
MSB
 LSB

Timer 1 clock source selection bit:
$000=f x x / 1024$
$001=\mathrm{fxx} / 256$
$010=\mathrm{fxx} / 64$
$011=f x x / 8$
$100=\mathrm{fxx}$
101 = External clock falling edge
$110=$ External clock rising edge
111 = Counter stop

Timer 1 overflow interrupt enable bit
0 = Disable overflow interrupt
1 = Enable overflow interrrupt
Timer 1 match/capture interrupt enable bit:
$0=$ Disable interrupt
1 = Enable interrrupt
Timer 1 counter clear bit:
$0=$ No effect
1 = Clear counter (Auto-clear bit)

Timer 1 operating mode selection bit:
00 = Interval mode
01 = Capture mode (capture on rising edge, OVF can occur)
$10=$ Capture mode (capture on falling edge, OVF can occur)
11 = PWM mode
NOTE: Interrupt pending bits are located in TINTPND register.

Figure 12-1. Timer 1(0,1) Control Register (T1CON0, T1CON1)

Timer A, Timer 1 Pending Register (TINTPND)
EOH, Set 1, Bank 1, R/W

Figure 12-2. Timer A, Timer 1(0,1) Pending Register (TINTPND)

BLOCK DIAGRAM

Figure 12-3. Timer 1(0,1) Functional Block Diagram

```
PROGRAMMING TIP - Using the Timer 1(0)
ORG 0000h
    VECTOR 0C4h,TIM1_INT
    ORG 0100h
INITIAL:
LD SYM,\#00h ; Disable Global/Fast interrupt
    LD IMR,#00001000b ; Enable IRQ2 interrupt
    LD SPH,#00000000b ; Set stack area
    LD SPL,#00000000b
    LD BTCON,#10100011b ; Disable Watch-dog
    SB1
    LD T1CON0,#01000110b ; Enable interrupt, fxx/64, Interval,
    , Interval = 1.536 ms (10 MHz x'tal)
    SB0
    El
MAIN:
    \bullet
    \bullet
    MAIN ROUTINE
    \bullet
    \bullet
    JR T,MIAN
TIM1_INT:
    \bullet
    \bullet
    -
    Interrupt service routine
    \bullet
    -
    \bullet
    IRET
    END
```


OVERVIEW

The UART block has a full-duplex serial port with programmable operating modes: There is one synchronous mode and three UART (Universal Asynchronous Receiver/Transmitter) modes:

- Shift Register I/O with baud rate of $\mathrm{fxx} /(16 \times(16-$ bit BRDATA +1$))$
- 8 -bit UART mode; variable baud rate, $\mathrm{fxx} /(16 \times(16-$ bit BRDATA +1$))$
- 9 -bit UART mode; variable baud rate, $\mathrm{fxx} /(16 \times(16$-bit BRDATA +1$))$

UART receive and transmit buffers are both accessed via the data register, UDATA, is at address F5H. Writing to the UART data register loads the transmit buffer; reading the UART data register accesses a physically separate receive buffer.

When accessing a receive data buffer (shift register), reception of the next byte can begin before the previously received byte has been read from the receive register. However, if the first byte has not been read by the time the next byte has been completely received, the first data byte will be lost (Overrun error).

In all operating modes, transmission is started when any instruction (usually a write operation) uses the UDATA register as its destination address. In mode 0 , serial data reception starts when the receive interrupt pending bit (UARTPND.1) is " 0 " and the receive enable bit (UARTCON.4) is " 1 ". In mode 1 and 2, reception starts whenever an incoming start bit ("0") is received and the receive enable bit (UARTCON.4) is set to "1".

PROGRAMMING PROCEDURE

To program the UART modules, follow these basic steps:

1. Configure P1.4 and P1.5 to alternative function (RXD (P1.4), TXD (P1.5)) for UART module by setting the P1CONL register to appropriatly value.
2. Load an 8-bit value to the UARTCON control register to properly configure the UART I/O module.
3. For parity generation and check in UART mode 2, set parity enable bit (UARTPND.5) to "1".
4. For interrupt generation, set the UART interrupt enable bit (UARTCON. 1 or UARTCON.0) to "1".
5. When you transmit data to the UART buffer, write transmit data to UDATA, the shift operation starts.
6. When the shift operation (transmit/receive) is completed, UART pending bit (UARTPND. 1 or UARTPND.0) is set to "1" and an UART interrupt request is generated.

UART CONTROL REGISTER (UARTCON)

The control register for the UART is called UARTCON at address F6H. It has the following control functions:

- Operating mode and baud rate selection
- Multiprocessor communication and interrupt control
- Serial receive enable/disable control
- 9th data bit location for transmit and receive operations (mode 2)
- Parity generation and check for transmit and receive operations (mode 2)
- UART transmit and receive interrupt control

A reset clears the UARTCON value to " 00 H ". So, if you want to use UART module, you must write appropriate value to UARTCON.

(2)

MS1	MS0	Mode	Description	Baud Rate
0	0	0	Shift register	$\mathrm{fxx} /(16 \times(16$ bit BRDATA + 1) $)$
0	1	1	8-bit UART	$\mathrm{fxx} /(16 \times(16$ bit BRDATA + 1) $)$
1	x	2	9-bit UART	$\mathrm{fxx} /(16 \times(16$ bit BRDATA +1$))$

NOTES:

1. In mode 2, if the UARTCON. 5 bit is set to "1" then the receive interrupt will not be activated if the received 9th data bit is " 0 ". In mode 1 , if UARTCON. $5=11$ " then the receive interrut will not be activated if a valid stop bit was not received.
2. The descriptions for 8-bit and 9-bit UART mode do not include start and stop bits for serial data receive and transmit.
3. Parity enable bits, PEN, is located in the UARTPND register at address F4H.
4. Parity enable and parity error check can be available in 9-bit UART mode (Mode 2) only.

Figure 13-1. UART Control Register (UARTCON)

UART INTERRUPT PENDING REGISTER (UARTPND)

The UART interrupt pending register, UARTPND is located at address F4H. It contains the UART data transmit interrupt pending bit (UARTPND.0) and the receive interrupt pending bit (UARTPND.1).

In mode 0 of the UART module, the receive interrupt pending flag UARTPND. 1 is set to " 1 " when the 8th receive data bit has been shifted. In mode 1 or 2 , the UARTPND. 1 bit is set to "1" at the halfway point of the stop bit's shift time. When the CPU has acknowledged the receive interrupt pending condition, the UARTPND. 1 flag must be cleared by software in the interrupt service routine.

In mode 0 of the UART module, the transmit interrupt pending flag UARTPND. 0 is set to "1" when the 8th transmit data bit has been shifted. In mode 1 or 2, the UARTPND. 0 bit is set at the start of the stop bit. When the CPU has acknowledged the transmit interrupt pending condition, the UARTPND. 0 flag must be cleared by software in the interrupt service routine.

UART Pending Register (UARTPND)
F4H, Set1, Bank 0, R/W, Reset Value: 00H

NOTES:

1. In order to clear a data transmit or receive interrupt pendingflag, you must write a " 0 " to the appropriate pending bit. A "0" has no effect.
2. To avoid errors, we recommend using load instruction (except for LDB), when manipulating UARTPND values.
3. Parity enable and parity error check can be available in 9-bit UART mode (Mode 2) only.
4. Parity error bit (RPE) will be refreshed whenever 8th receive data bit has been shifted.

Figure 13-2. UART Interrupt Pending Register (UARTPND)

In mode 2 (9-bit UART data), by setting the parity enable bit (PEN) of UARTPND register to ' 1 ', the $9^{\text {th }}$ data bit of transmit data will be an automatically generated parity bit. Also, the $9^{\text {th }}$ data bit of the received data will be treated as a parity bit for checking the received data.

In parity enable mode (PEN = 1), UARTCON. 3 (TB8) and UARTCON. 2 (RB8) will be a parity selection bit for transmit and receive data respectively. The UARTCON. 3 (TB8) is for settings of the even parity generation (TB8 = 0) or the odd parity generation $(T B 8=0)$ in the transmit mode. The UARTCON. $2(\mathrm{RB} 8)$ is also for settings of the even parity checking $(R B 8=0)$ or the odd parity checking $(R B 8=1)$ in the receive mode. The parity enable (generation/checking) functions are not available in UART mode 0 and 1.

If you don't want to use a parity mode, UARTCON. 2 (RB8) and UARTCON. 3 (TB8) are a normal control bit as the $9^{\text {th }}$ data bit, in this case, PEN must be disable ("0") in mode 2. Also it is needed to select the 9th data bit to be transmitted by writing TB8 to "0" or "1".

The receive parity error flag (RPE) will be set to ' 0 ' or ' 1 ' depending on parity error whenever the $8^{\text {th }}$ data bit of the receive data has been shifted.

UART DATA REGISTER (UDATA)

UART Data Register (UDATA)
F5H, Set1, Bank 0, R/W, Reset Value: FFH

Figure 13-3. UART Data Register (UDATA)

UART BAUD RATE DATA REGISTER (BRDATAH, BRDATAL)

The value stored in the UART baud rate register, (BRDATAH, BRDATAL), lets you determine the UART clock rate (baud rate).

Figure 13-4. UART Baud Rate Data Register (BRDATAH, BRDATAL)

BAUD RATE CALCULATIONS

The baud rate is determined by the baud rate data register, 16 -bit BRDATA

```
Mode 0 baud rate = fxx/(16 > (16-bit BRDATA + 1))
Mode 1 baud rate =fxx/(16 < (16-bit BRDATA + 1))
Mode 2 baud rate =fxx/(16 < (16-bit BRDATA + 1))
```

Table 13-1. Commonly Used Baud Rates Generated by 16-bit BRDATA

Baud Rate	Oscillation Clock	BRDATAH		BRDATAL	
		Decimal	Hex	Decimal	Hex
$230,400 \mathrm{~Hz}$	11.0592 MHz	0	0 H	02	02 H
$115,200 \mathrm{~Hz}$	11.0592 MHz	0	0 H	05	05 H
$57,600 \mathrm{~Hz}$	11.0592 MHz	0	0 H	11	0 BH
$38,400 \mathrm{~Hz}$	11.0592 MHz	0	0 H	17	11 H
$19,200 \mathrm{~Hz}$	11.0592 MHz	0	0 H	35	23 H
$9,600 \mathrm{~Hz}$	11.0592 MHz	0	0 H	71	47 H
$4,800 \mathrm{~Hz}$	11.0592 MHz	0	0 H	143	8 FH
$76,800 \mathrm{~Hz}$	10 MHz	0	0 H	7	7 H
$38,400 \mathrm{~Hz}$	10 MHz	0	0 H	15	FH
$19,200 \mathrm{~Hz}$	10 MHz	0	0 H	31	1 FH
$9,600 \mathrm{~Hz}$	10 MHz	0	0 H	64	40 H
$4,800 \mathrm{~Hz}$	10 MHz	0 H	129	81 H	
$2,400 \mathrm{~Hz}$	10 MHz	1	1 H	3	3 H
600 Hz	10 MHz	4	4 H	16	10 H
$38,461 \mathrm{~Hz}$	8 MHz	0	0 H	12	0 CH
$12,500 \mathrm{~Hz}$	8 MHz	0	0 H	39	27 H
$19,230 \mathrm{~Hz}$	4 MHz	0 H	12	0 CH	
$9,615 \mathrm{~Hz}$	4 MHz	0 H	25	19 H	

BLOCK DIAGRAM

Figure 13-5. UART Functional Block Diagram

UART MODE 0 FUNCTION DESCRIPTION

In mode 0, UART is input and output through the RxD (P1.4) pin and TxD (P1.5) pin outputs the shift clock. Data is transmitted or received in 8-bit units only. The LSB of the 8-bit value is transmitted (or received) first.

Mode 0 Transmit Procedure

1. Select mode 0 by setting UARTCON. 6 and .7 to "00B".
2. Write transmission data to the shift register UDATA (F5H) to start the transmission operation.

Mode 0 Receive Procedure

1. Select mode 0 by setting UATCON. 6 and .7 to "00B".
2. Clear the receive interrupt pending bit (UARTPND.1) by writing a "0" to UARTPND.1.
3. Set the UART receive enable bit (UARTCON.4) to "1".
4. The shift clock will now be output to the TxD (P1.5) pin and will read the data at the RxD (P1.4) pin. A UART receive interrupt (vector E4H) occurs when UARTCON. 1 is set to "1".

Figure 13-6. Timing Diagram for UART Mode 0 Operation

UART MODE 1 FUNCTION DESCRIPTION

In mode 1, 10-bits are transmitted (through the TxD (P1.5) pin) or received (through the RxD (P1.4) pin). Each data frame has three components:
— Start bit ("0")

- 8 data bits (LSB first)
— Stop bit ("1")

When receiving, the stop bit is written to the RB8 bit in the UARTCON register. The baud rate for mode 1 is variable.

Mode 1 Transmit Procedure

1. Select the baud rate generated by 16bit BRDATA.
2. Select mode 1 (8-bit UART) by setting UARTCON bits 7 and 6 to ' 01 B '.
3. Write transmission data to the shift register UDATA (F5H). The start and stop bits are generated automatically by hardware.

Mode 1 Receive Procedure

1. Select the baud rate to be generated by 16-bit BRDATA.
2. Select mode 1 and set the RE (Receive Enable) bit in the UARTCON register to "1".
3. The start bit low ("0") condition at the RxD (P1.4) pin will cause the UART module to start the serial data receive operation.

Figure 13-7. Timing Diagram for UART Mode 1 Operation

UART MODE 2 FUNCTION DESCRIPTION

In mode 2, 11-bits are transmitted (through the TxD pin) or received (through the RxD pin). Each data frame has four components:
— Start bit ("0")

- 8 data bits (LSB first)
- Programmable 9th data bit or parity bit
— Stop bit ("1")

< In parity disable mode (PEN = 0) >

The 9th data bit to be transmitted can be assigned a value of " 0 " or "1" by writing the TB8 bit (UARTCON.3).
When receiving, the 9th data bit that is received is written to the RB8 bit (UARTCON.2), while the stop bit is ignored. The baud rate for mode 2 is fosc/($16 \times(16-$ bit BRDATA +1$)$) clock frequency.

< In parity enable mode (PEN = 1) >

The 9th data bit to be transmitted can be an automatically generated parity of "0" or "1" depending on a parity generation by means of TB8 bit (UARTCON.3). When receiving, the received 9th data bit is treated as a parity for checking receive data by means of the RB8 bit (UARTCON.2), while the stop bit is ignored. The baud rate for mode 2 is fosc/(16x(16-bit BRDATA + 1)) clock frequency.

Mode 2 Transmit Procedure

1. Select the baud rate generated by 16-bit BRDATA.
2. Select mode 2 (9-bit UART) by setting UARTCON bits 6 and 7 to ' $10 B^{\prime}$. Also, select the 9 th data bit to be transmitted by writing TB8 to " 0 " or " 1 " and set PEN bit of UARTPND register to " 0 " if you don't use a parity mode. If you want to use the parity enable mode, select the parity bit to be transmitted by writing TB8 to "0" or "1" and set PEN bit of UARTPND register to " 1 ".
3. Write transmission data to the shift register, UDATA (F5H), to start the transmit operation.

Mode 2 Receive Procedure

1. Select the baud rate to be generated by 16-bit BRDATA.
2. Select mode 2 and set the receive enable bit (RE) in the UARTCON register to "1".
3. If you don't use a parity mode, set PEN bit of UARTPND register to " 0 " to disable parity mode.

If you want to use the parity enable mode, select the parity type to be check by writing TB8 to " 0 " or " 1 " and set PEN bit of UARTPND register to " 1 ". Only 8 bits (Bit0 to Bit7) of received data are available for data value.
4. The receive operation starts when the signal at the RxD pin goes to low level.

Figure 13-8. Timing Diagram for UART Mode 2 Operation

SERIAL COMMUNICATION FOR MULTIPROCESSOR CONFIGURATIONS

The S3C9-series multiprocessor communication features let a "master" S3C84E5/C84E9/P84E9 send a multipleframe serial message to a "slave" device in a multi- S3C84E5/C84E9/P84E9 configuration. It does this without interrupting other slave devices that may be on the same serial line.

This feature can be used only in UART mode 2 with the parity disable mode. In mode 2, 9 data bits are received. The 9th bit value is written to RB8 (UARTCON.2). The data receive operation is concluded with a stop bit. You can program this function so that when the stop bit is received, the serial interrupt will be generated only if RB8 = "1".

To enable this feature, you set the MCE bit in the UARTCON registers. When the MCE bit is "1", serial data frames that are received with the 9 th bit $=" 0 "$ do not generate an interrupt. In this case, the 9th bit simply separates the address from the serial data.

Sample Protocol for Master/Slave Interaction

When the master device wants to transmit a block of data to one of several slaves on a serial line, it first sends out an address byte to identify the target slave. Note that in this case, an address byte differs from a data byte: In an address byte, the 9th bit is " 1 " and in a data byte, it is " 0 ".

The address byte interrupts all slaves so that each slave can examine the received byte and see if it is being addressed. The addressed slave then clears its MCE bit and prepares to receive incoming data bytes.

The MCE bits of slaves that were not addressed remain set, and they continue operating normally while ignoring the incoming data bytes.

While the MCE bit setting has no effect in mode 0 , it can be used in mode 1 to check the validity of the stop bit. For mode 1 reception, if MCE is " 1 ", the receive interrupt will be issue unless a valid stop bit is received.

Setup Procedure for Multiprocessor Communications

Follow these steps to configure multiprocessor communications:

1. Set all S3C84E5/C84E9/P84E9 devices (masters and slaves) to UART mode 2 with parity disable.
2. Write the MCE bit of all the slave devices to "1".
3. The master device's transmission protocol is:

- First byte: the address identifying the target slave device (9th bit = "1")
- Next bytes: data (9th bit = "0")

4. When the target slave receives the first byte, all of the slaves are interrupted because the 9th data bit is "1". The targeted slave compares the address byte to its own address and then clears its MCE bit in order to receive incoming data. The other slaves continue operating normally.

Full-Duplex Multi-S3C84E5/C84E9/P84E9 Interconnect

Figure 13-9. Connection Example for Multiprocessor Serial Data Communications

WATCH TIMER

OVERVIEW

Watch timer functions include real-time and watch-time measurement and interval timing for the system clock. To start watch timer operation, set bit1 and bit 6 of the watch timer mode register, WTCON.1and 6, to " 1 ". After the watch timer starts and elapses a time, the watch timer interrupt is automatically set to " 1 ", and interrupt requests commence in 1.955 ms or $0.125,0.25$ and 0.5 -second intervals.

The watch timer can generate a steady $0.5 \mathrm{kHz}, 1 \mathrm{kHz}, 2 \mathrm{kHz}$, or 4 kHz signal to the BUZZER output (BZOUT pin). By setting WTCON. 3 and WTCON. 2 to " 11 b ", the watch timer will function in high-speed mode, generating an interrupt every 1.955 ms . High-speed mode is useful for timing events for program debugging sequences.

- Real-time and Watch-time measurement
- Using a main system or subsystem clock source
- Buzzer output frequency generator
- Timing tests in high-speed mode

WATCH TIMER CONTROL REGISTER (WTCON: R/W)

FAH	WTCON. 7	WTCON.6	WTCON.5	WTCON.4	WTCON.3	WTCON. 2	WTCON. 1	WTCON. 0
RESET	$" 0 "$	$" 0 "$	$" 0 "$	$" 0 "$	$" 0 "$	$" 0 "$	$" 0 "$	$" 0 "$

Table 14-1. Watch Timer Control Register (WTCON): Set 1, Bank 0, FAH, R/W

Bit Name	Values	Function	Address
WTCON. 7	0	Select (fx/256) as the watch timer clock (fx: Main clock)	FAH
	1	Select subsystem clock as watch timer clock	
WTCON. 6	0	Disable watch timer interrupt	
	1	Enable watch timer interrupt	
WTCON.5-. 4	0	0.5 kHz buzzer (BZOUT) signal output	
	0	1 kHz buzzer (BZOUT) signal output	
	$1{ }^{1}$	2 kHz buzzer (BZOUT) signal output	
	1	4 kHz buzzer (BZOUT) signal output	
WTCON.3-. 2	0	Set watch timer interrupt to 0.5 s .	
	0	Set watch timer interrupt to 0.25 s .	
	$1{ }^{1}$	Set watch timer interrupt to 0.125 s .	
	$1{ }^{1}$	Set watch timer interrupt to 1.955 ms .	
WTCON. 1	0	Disable watch timer, clear frequency dividing circuits	
	1	Enable watch timer	
WTCON. 0	0	Interrupt is not pending, clear pending bit when write	
	1	Interrupt is pending	

NOTE: Main system clock frequency (fx) is assumed to be 9.8304 MHz

WATCH TIMER CIRCUIT DIAGRAM

Figure 14-1. Watch Timer Circuit Diagram

PROGRAMMING TIP - Using the Watch Timer

```
\begin{tabular}{ll} 
ORG & 0000 h \\
VECTOR & \(0 C C h, W T \_I N T\)
\end{tabular}
ORG 0100h
INITIAL:
LD SYM,\#00h ; Disable Global/Fast interrupt
LD IMR,\#00010000b ; Enable IRQ3 interrupt
LD SPH,\#00000000b ; Set stack area
LD SPL,\#0FFh
LD BTCON,\#10100011b ; Disable Watch-dog
LD WTCON,\#11001110b ; 0.5 kHz buzzer, 1.955 ms duration interrupt
; Interrupt enable, (fxt: 32, 768Hz)
EI
MAIN:
MAIN ROUTINE
-
-
JR T,MIAN
WT_INT:
-
-
AND WTCON,\#11111110b ; pending clear
IRET
.END
```


15
 A/D CONVERTER

OVERVIEW

The 10-bit A/D converter (ADC) module uses successive approximation logic to convert analog levels entering at one of the eight input channels to equivalent 10-bit digital values. The analog input level must lie between the $\mathrm{AV}_{\text {REF }}$ and $A V_{\text {SS }}$ values. The A / D converter has the following components:

- Analog compactor with successive approximation logic
- D/A converter logic (resistor string type)
- ADC control register, ADCON (set 1, bank 0, F7H, read/write, but ADCON. 3 is read only)
- Eight multiplexed analog data input pins (ADC0-ADC7)
- 10-bit A/D conversion data output register (ADDATAH, ADDATAL)
- Internal AVREF and AVSS

FUNCTION DESCRIPTION

To initiate an analog-to-digital conversion procedure, at first, you must configure P3.0-P3.7 to analog input before A/D conversions because the P3.0 - P3.7 pins can be used alternatively as normal data I/O or analog input pins. To do this, you load the appropriate value to the P3CONH, and P3CONL (for ADC0 - ADC7) register.
And you write the channel selection data in the A/D converter control register ADCON to select one of the eight analog input pins (ADCn, $\mathrm{n}=0-7$) and set the conversion start or enable bit, ADCON.0. A 10-bit conversion operation can be performed for only one analog input channel at a time. The read-write ADCON register is located in set 1 , bank 0 at address F7H.

During a normal conversion, ADC logic initially sets the successive approximation register to 200 H (the approximate half-way point of an 10-bit register). This register is then updated automatically during each conversion step. The successive approximation block performs 10-bit conversions for one input channel at a time. You can dynamically select different channels by manipulating the channel selection bit value (ADCON.6-.4) in the ADCON register.

To start the A/D conversion, you should set the enable bit, ADCON.O. When a conversion is completed, ADCON.3, the end-of-conversion (EOC) bit is automatically set to 1 and the result is dumped into the ADDATAH, ADDATAL registers where it can be read. The ADC module enters an idle state. Remember to read the contents of ADDATAH and ADDATAL before another conversion starts. Otherwise, the previous result will be overwritten by the next conversion result.

NOTE

Because the ADC does not use sample-and-hold circuitry, it is important that any fluctuations in the analog level at the ADC0-ADC7 input pins during a conversion procedure be kept to an absolute minimum. Any change in the input level, perhaps due to circuit noise, will invalidate the result.

A/D CONVERTER CONTROL REGISTER (ADCON)

The A/D converter control register, ADCON, is located in set1, bank 0 at address F7H. ADCON is read-write addressable using 8 -bit instructions only. But, the EOC bit, ADCON. 3 is read only. ADCON has four functions:

- Bits 6-4 select an analog input pin (ADC0-ADC7).
- Bit 3 indicates the end of conversion status of the A/D conversion.
- Bits 2-1 select a conversion speed.
- Bit 0 starts the A/D conversion.

Only one analog input channel can be selected at a time. You can dynamically select any one of the eight analog input pins, ADC0-ADC7 by manipulating the 3-bit value for ADCON.6-ADCON. 4

Figure 15-1. A/D Converter Control Register (ADCON)

Figure 15-2. A/D Converter Data Register (ADDATAH, ADDATAL)

Figure 15-3. A/D Converter Circuit Diagram

INTERNAL REFERENCE VOLTAGE LEVELS

In the ADC function block, the analog input voltage level is compared to the reference voltage. The analog input level must remain within the range AVSS to AVREF (AVREF = VDD).

Different reference voltage levels are generated internally along the resistor tree during the analog conversion process for each conversion step. The reference voltage level for the first bit conversion is always $1 / 2$ AVREF.

CONVERSION TIMING

The A/D conversion process requires 4 steps (4 clock edges) to convert each bit and 10 clocks to step-up A/D conversion. Therefore, total of 50 clocks is required to complete a 10 -bit conversion: With a 10 MHz CPU clock frequency, one clock cycle is 400 ns ($4 / \mathrm{fxx}$). If each bit conversion requires 4 clocks, the conversion rate is calculated as follows:

4 clocks/bit x 10-bits + step-up time (10 clock) $=50$ clocks
50 clock $\mathrm{x} 400 \mathrm{~ns}=20 \mu \mathrm{~s}$ at $10 \mathrm{MHz}, 1$ clock time $=4 / \mathrm{fxx}$

Figure 15-4. A/D Converter Timing Diagram

INTERNAL A/D CONVERSION PROCEDURE

1. Analog input must remain between the voltage range of AVSS and AVREF.
2. Configure P3.0-P3.7 for analog input before A/D conversions. To do this, you load the appropriate value to the P3CONH and P3CONL (for ADC0-ADC7) registers.
3. Before the conversion operation starts, you must first select one of the eight input pins (ADC0-ADC7) by writing the appropriate value to the ADCON register.
4. When conversion has been completed, (50 clocks have elapsed), the EOC, ADCON. 3 flag is set to " 1 ", so that a check can be made to verify that the conversion was successful.
5. The converted digital value is loaded to the output register, ADDATAH (8-bit) and ADDATAL (2-bit), then the ADC module enters an idle state.
6. The digital conversion result can now be read from the ADDATAH and ADDATAL register.

NOTE: The symbol "R" signifies an offset resistor with a value of from 50 to 100Ω.

Figure 15-5. Recommended A/D Converter Circuit for Highest Absolute Accuracy

PROGRAMMING TIP — Configuring A/D Converter

LD	P3CONH, \#11111111B	$;$
LD $3.7-P 3.4$ A/D Input MODE		
	P3CONL, \#11111111B	$;$

-
-

LD ADCON, \#00000001B ; Channel ADC0, fxx, Conversion start
ADO_CHK: TM ADCON, \#00001000B ; A/D conversion end \rightarrow EOC check JR Z, ADO_CHK ; No

LD ADOBUFH, ADDATAH ; 8-bit conversion data
LD ADOBUFL, ADDATAL ; 2-bit conversion data

	LD	ADCON, \#00110001B	$;$ Channel ADC3, fxx, Conversion start
AD3_CHK:	TM	ADCON, \#00001000B	$;$ A/D conversion end \rightarrow EOC check
	JR	Z, AD3_CHK	; No

LD AD3BUFH, ADDATAH ; 8-bit conversion data
LD AD3BUFL, ADDATAL ; 2-bit conversion data

16 гow voutace feser

OVERVIEW

The S3C84E5/C84E9/P84E9 can be reset in four ways:

- by external power-on-Reset
- by the external nReset input pin pulled low
- by the digital watchdog timing out
- by the Low Voltage reset circuit (LVR)

During an external power-on reset, the voltage VDD is High level and the nRESET pin is forced Low level. The RESET signal is input through a Schmitt trigger circuit where it is then synchronized with the CPU clock. This brings the S3C84E5/C84E9/P84E9 into a known operating status. To ensure correct start-up, the user should take that Reset signal is not released before the VDD level is sufficient to allow MCU operation at the chosen frequency.

The nRESET pin must be held to Low level for a minimum time interval after the power supply comes within tolerance in order to allow time for internal CPU clock oscillation to stabilize. The minimum required oscillation stabilization time for a Reset is approximately $6.55 \mathrm{~ms}\left(\cong 2^{16} / \mathrm{fosc}\right.$, fosc $\left.=10 \mathrm{MHz}\right)$.

When a Reset occurs during normal operation (with both VDD and nRESET at High level), the signal at the nRESET pin is forced Low and the reset operation starts. All system and peripheral control registers are then set to their default hardware Reset values (see Table 8-1).

The MCU provides a watchdog timer function in order to ensure graceful recovery from software malfunction. If watchdog timer is not refreshed before an end-of-counter condition (overflow) is reached, the internal Reset will be activated.

The S3C84E5/C84E9/P84E9 has a built-in low voltage Reset circuit that allows detection of power voltage drop of external VDD input level to prevent a MCU from malfunctioning in an unstable MCU power level. This voltage detector works for the Reset operation of MCU. This Low Voltage reset includes an analog compactor and Vref circuit. The value of a detection voltage is set internally by hardware. The on-chip Low Voltage Reset, features static reset when supply voltage is below a reference voltage value (Typical 2.9 V). Thanks to this feature, external reset circuit can be removed while keeping the application safety. As long as the supply voltage is below the reference value, there is an internal and static RESET. The MCU can start only when the supply voltage rises over the reference voltage.

When you calculate power consumption, please remember that a static current of LVR circuit should be added a CPU operating current in any operating modes such as Stop, Idle, and normal RUN mode.

SAMSUNG

Figure 16-1. Low Voltage Reset Circuit

NOTE

To program the duration of the oscillation stabilization interval, you make the appropriate settings to the basic timer control register, BTCON, before entering Stop mode. Also, if you do not want to use the basic timer watchdog function (which causes a system reset if a basic timer counter overflow occurs), you can disable it by writing '1010B' to the upper nibble of BTCON.

17

ELECTRICAL DATA

OVERVIEW

In this chapter, S3C84E5/C84E9/P84E9 electrical characteristics are presented in tables and graphs. The information is arranged in the following order:

- Absolute maximum ratings
- Input/output capacitance
- D.C. electrical characteristics
- A.C. electrical characteristics
- Oscillation characteristics
- Oscillation stabilization time
- Data retention supply voltage in stop mode
- UART timing characteristics in mode 0
- A/D converter electrical characteristics

Table 17-1. Absolute Maximum Ratings
($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	Rating	Unit
Supply voltage	V_{DD}		-0.3 to +6.5	V
Input voltage	V_{I}	All input ports	-0.3 to VDD +0.3	
Output voltage	V_{O}	All output ports	-0.3 to VDD +0.3	
Output current high	I_{OH}	One I/O pin active	-18	mA
		All I/O pins active	-60	+30
Output current low	I_{OL}	One I/O pin active	-25 to +85	${ }^{\circ} \mathrm{C}$
		All I/O pins active	-65 to +150	

Table 17-2. Input/Output Capacitance
$\left(T_{A}=-25^{\circ} \mathrm{C}\right.$ to $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	Min	Typ.	Max	Unit
Input capacitance	C_{IN}	$\mathrm{f}=1 \mathrm{MHz}$; unmeasured pins are tied to V_{SS}	-	-	10	pF
Output capacitance	$\mathrm{C}_{\mathrm{OUT}}$					
I/O capacitance	C_{IO}					

Table 17-3. D.C. Electrical Characteristics
$\left(T_{A}=-25^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LVR}}$ to 5.5 V)

Parameter	Symbol	Conditions	Min	Typ.	Max	Unit
Input high voltage	$\mathrm{V}_{\mathrm{HH} 1}$	$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LVR}}$ to 5.5 V All port and nRESET	$0.8 \mathrm{~V}_{\mathrm{DD}}$	-	V_{DD}	V
	$\mathrm{V}_{1 \mathrm{H} 2}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LVR}} \text { to } 5.5 \mathrm{~V} \\ & \mathrm{X}_{\mathrm{IN}} \text { and } \mathrm{XT} \mathrm{~T}_{\mathrm{IN}} \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}-0.5$			
Input low voltage	$\mathrm{V}_{\text {IL1 }}$	$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LVR}}$ to 5.5 V All ports and nRESET	-	-	$0.2 \mathrm{~V}_{\mathrm{DD}}$	V
	$\mathrm{V}_{\mathrm{IL} 2}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\mathrm{VLVR} \text { to } 5.5 \mathrm{~V} \\ & \text { XIN and XTIN } \end{aligned}$			0.4	
Output high voltage	V_{OH}	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \text { All ports } \\ & \hline \end{aligned}$	$V_{D D}-1.0$	-	-	V
Output low voltage	$\mathrm{V}_{\text {OL1 }}$	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=15 \mathrm{~mA}$ Ports 0 and 4	-	0.4	2.0	V
	$\mathrm{V}_{\mathrm{OL} 2}$	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$ Ports 1, 2 and 3				
Input high leakage current	$\mathrm{ILHH1}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}} \\ & \text { All input pins except } \mathrm{I}_{\mathrm{LIH} 2} \end{aligned}$	-	-	1	$\mu \mathrm{A}$
	$\mathrm{I}_{\text {LIH2 }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}} \\ & \mathrm{X}_{\mathrm{IN}}, \mathrm{X}_{\text {OUT }} \text { and } \mathrm{XT}_{\text {IN }}, \mathrm{XT}_{\text {OUT }} \end{aligned}$			20	
Input low leakage current	$\mathrm{I}_{\text {LIL } 1}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & \text { All input pins except and } \mathrm{I}_{\text {LIL2 }} \end{aligned}$	-	-	-1	
	$\mathrm{I}_{\text {LIL2 }}$	$\begin{aligned} & \mathrm{V}_{\text {IN }}=0 \mathrm{~V} \\ & \mathrm{X}_{\mathrm{IN}}, \mathrm{X}_{\text {OUT }} \text { and } \mathrm{XT}_{\text {IN }}, \mathrm{XT}_{\text {OUT }} \end{aligned}$			-20	
Output high leakage current	$\mathrm{I}_{\text {LOH }}$	$V_{\text {OUT }}=V_{D D}$ All output pins	-	-	2	
Output low leakage current	${ }_{\text {L LOL }}$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ All output pins	-	-	-2	

Table 17-3. D.C. Electrical Characteristics (Continued)
$\left(\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LVR}}$ to 5.5 V)

Parameter	Symbol	Conditions	Min	Typ.	Max	Unit
Pull-up resistor	$\mathrm{R}_{\mathrm{P} 1}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ All I/O pins except nRESET	10	50	100	$\mathrm{k} \Omega$
		$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ All I/O pins except nRESET	20	100	400	
	$\mathrm{R}_{\mathrm{P} 2}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ nRESET only	50	250	600	
		$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ nRESET only	100	500	1000	
Supply current ${ }^{(1)}$	$\mathrm{I}_{\mathrm{DD} 1}{ }^{(2)}$	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}$ RUN mode 12 MHz CPU clock	-	15	30	mA
		$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LVR}}$ to 5.5 V 8 MHz CPU clock		4	10	
	$\mathrm{I}_{\mathrm{DD} 2}$	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}$ Idle mode 12 MHz CPU clock		3.4	7	
		$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LVR}} \text { to } 5.5 \mathrm{~V}$ 8 MHz CPU clock		1	2.5	
	$\mathrm{I}_{\text {DD3 }}$	Sub operating: main-osc stop $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LVR}}$ to 3.3 V 32768 Hz crystal oscillator	-	100	150	uA
	$\mathrm{I}_{\text {DD4 }}$	Sub idle mode: main-osc stop $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LVR}}$ to 3.3 V 32768 Hz crystal oscillator	-	90	140	
	$\mathrm{I}_{\text {DD5 }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$ Stop mode	-	80	100	
		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LVR}} \text { to } 3.3 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$ Stop mode	-	45	80	

NOTES:

1. Supply current does not include current drawn through internal pull-up resistors or external output current loads.
2. $I_{D D 1}$ and $I_{D D 2}$ include a power consumption of subsystem oscillator.
3. $\mathrm{I}_{\mathrm{DD} 3}$ and $\mathrm{I}_{\mathrm{DD} 4}$ are the current when the main system clock oscillation stop and the subsystem clock is used.
4. $\mathrm{I}_{\mathrm{DD} 5}$ is the current when the main and subsystem clock oscillation stop.
5. All currents (IDD1 ${ }^{-I_{D D 5}}$) include the current consumption of LVR circuit.

Table 17-4. A.C. Electrical Characteristics
$\left(\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LVR}}$ to 5.5 V$)$

Parameter	Symbol	Conditions	Min	Typ.	Max	Unit
Interrupt input high, low width (Ports 4)	$\mathrm{t}_{\mathrm{INTH}}$, $\mathrm{t}_{\mathrm{INTL}}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	180	-	-	ns
nRESET input low width	$\mathrm{t}_{\mathrm{RSL}}$	Input	1.0	-	-	$\mu \mathrm{S}$

NOTE: User must keep more large value then min value.

Figure 17-1. Input Timing for External Interrupts (Ports 4 and 6)

Figure 17-2. Input Timing for RESET

Table 17-5. Main Oscillator Frequency ($\mathrm{f}_{\mathrm{osc} 1}$)
$\left(\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LVR}}\right.$ to 5.5 V$)$

Oscillator	Clock Circuit	Test Condition	Min	Typ.	Max	Unit
Main crystal or ceramic	XIN					

Table 17-6. Main Oscillator Clock Stabilization Time ($\mathrm{t}_{\mathrm{ST} 1}$)
$\left(\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LVR}}\right.$ to 5.5 V$)$

Oscillator	Test Condition	Min	Typ.	Max	Unit
Main crystal	$f_{\text {OSC }}>400 \mathrm{kHz}$ Oscillation stabilization occurs when V_{DD} is equal to the minimum oscillator voltage range.	-	-	10	ms
Main ceramic		-	-	4	
External clock (main system)	$\mathrm{X}_{\text {IN }}$ input High and Low width ($\left.\mathrm{t}_{\mathrm{XH}}, \mathrm{t}_{\mathrm{XL}}\right)$	50	-	-	ns
Oscillator stabilization wait time	$\mathrm{t}_{\text {WAIT }}$ when released by a reset ${ }^{(1)}$	-	$2^{16 / \mathrm{f}_{\mathrm{OSC}}}$	-	sec
	$\mathrm{t}_{\text {WAIT }}$ when released by an interrupt ${ }^{(2)}$	-	-	-	sec

NOTES:

1. $f_{\text {OSC }}$ is the oscillator frequency.
2. The duration of the oscillator stabilization wait time, $\mathrm{t}_{\text {WAIT }}$, when it is released by an interrupt is determined by the settings in the basic timer control register, BTCON.

Figure 17-3. Clock Timing Measurement at $X_{I N}$

Table 17-7. Sub Oscillator Frequency ($\mathrm{f}_{\mathrm{Osc} 2}$)
$\left(\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LVR}}\right.$ to 5.5 V$)$

Oscillator	Clock Circuit	Test Condition	Min	Typ.	Max	Unit
Crystal		Crystal oscillation frequency $C 1=100 \mathrm{pF}, \mathrm{C} 2=100 \mathrm{pF}$ $R=330 \Omega$ $\mathrm{XT}_{\text {IN }}$ and $\mathrm{XT}_{\text {OUT }}$ are connected with R and C by soldering.	32	32.768	34	kHz

Table 17-8. Subsystem Oscillator (crystal) Stabilization Time ($\mathrm{t}_{\mathrm{ST} 2}$)
$\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Oscillator	Test Condition	Min	Typ.	Max	Unit
Normal mode	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ to 5.5 V	-	800	1600	ms
	$\mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LVR}}$ to 3.3 V	-		10	s
	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ to 5.5 V	-	400	800	ms
	$\mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LVR}}$ to 3.3 V	-	150	300	

NOTE: Oscillation stabilization time ($\mathrm{t}_{\mathrm{ST} 2}$) is the time required for the oscillator to it's normal oscillation when stop mode is released by interrupts. The value Typ. and Max are measured by buzzer output signal after stop release. For example in voltage range of 4.5 V to 5.5 V of normal mode, we can see the buzzer output signal within 400 ms at our test condition.

Table 17-9. Data Retention Supply Voltage in Stop Mode
$\left(\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LVR}}$ to 5.5 V)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Data retention supply voltage	$\mathrm{V}_{\text {DDDR }}$	Stop mode	2	-	5.5	v
Data retention supply current	$\mathrm{I}_{\mathrm{DDDR}}$	Stop mode, $\mathrm{V}_{\text {DDDR }}=2.0 \mathrm{~V}$	-	-	8	$\mu \mathrm{~A}$

NOTE: Supply current does not include current drawn through internal pull-up resistors or external output current loads.

Figure 17-4. Stop Mode Release Timing Initiated by RESET

Figure 17-5. Stop Mode (Main) Release Timing Initiated by Interrupts

Figure 17-6. Stop Mode (Sub) Release Timing Initiated by Interrupts

Table 17-10. UART Timing Characteristics in Mode 0 (10 MHz)
$\left(\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LVR}}$ to 5.5 V , Load capacitance $\left.=80 \mathrm{pF}\right)$

Parameter	Symbol	Min	Typ.	Max	Unit
Serial port clock cycle time	$\mathrm{t}_{\mathrm{SCK}}$	500	$\mathrm{t}_{\mathrm{CPU}} \times 6$	700	ns
Output data setup to clock rising edge	$\mathrm{t}_{\mathrm{S} 1}$	300	$\mathrm{t}_{\mathrm{CPU}} \times 5$	-	
Clock rising edge to input data valid	$\mathrm{t}_{\mathrm{S} 2}$	-	-	300	
Output data hold after clock rising edge	$\mathrm{t}_{\mathrm{H} 1}$	$\mathrm{t}_{\mathrm{CPU}}-50$	$\mathrm{t}_{\mathrm{CPU}}$	-	
Input data hold after clock rising edge	$\mathrm{t}_{\mathrm{H} 2}$	0	-	-	
Serial port clock High, Low level width	$\mathrm{t}_{\mathrm{HIGH}}, \mathrm{t}_{\mathrm{LOW}}$	200	$\mathrm{t}_{\mathrm{CPU}} \times 3$	400	

NOTES:

1. All timings are in nanoseconds (ns) and assume a $10-\mathrm{MHz}$ CPU clock frequency.
2. The unit tcPu means one CPU clock period.

Figure 17-7. Waveform for UART Timing Characteristics

Table 17-11. A/D Converter Electrical Characteristics
$\left(\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{LVR}}$ to $\left.5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}\right)$

Parameter	Symbol	Test Conditions	Min	Typ.	Max	Unit
Resolution			-	10	-	bit
Total accuracy		$\mathrm{V}_{\mathrm{DD}}=5.12 \mathrm{~V}$	-	-	± 3	LSB
Integral linearity error	ILE	$\begin{aligned} & \mathrm{CPU} \text { clock }=10 \mathrm{MHz} \\ & \mathrm{AV}_{\mathrm{REF}}=5.12 \mathrm{~V} \end{aligned}$		-	± 2	
Differential linearity error	DLE	$\mathrm{AV}_{\mathrm{SS}}=0 \mathrm{~V}$		-	± 1	
Offset error of top	EOT			± 1	± 3	
Offset error of bottom	EOB			± 0.5	± 2	
Conversion time (1)	tCON	10-bit conversion $50 \times 4 / \mathrm{f}_{\mathrm{OSC}}(3), \mathrm{f}_{\mathrm{OSC}}=10 \mathrm{MHz}$	20	-	-	$\mu \mathrm{S}$
Analog input voltage	VIAN	-	$\mathrm{AV}_{\text {SS }}$	-	$\mathrm{AV}_{\text {REF }}$	V
Analog input impedance	RAN	-	2	1000	-	MW
Analog reference voltage	AVREF	-	2.5	-	V_{DD}	V
Analog ground	AVSS	-	$\mathrm{V}_{\text {SS }}$	-	$\mathrm{V}_{\mathrm{SS}}+0.3$	
Analog input current	IADIN	$A V_{R E F}=V_{D D}=5 \mathrm{~V}$ conversion time $=20 \mu \mathrm{~s}$	-	-	10	$\mu \mathrm{A}$
Analog block current ${ }^{(2)}$	IADC	$A V_{\text {REF }}=V_{D D}=5 \mathrm{~V}$ conversion time $=20 \mu \mathrm{~s}$		1	3	mA
		$A V_{R E F}=V_{D D}=3 V$ conversion time $=20 \mu \mathrm{~s}$		0.5	1.5	
		$A V_{\mathrm{REF}}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ when power down mode		100	500	nA

NOTES:

1. "Conversion time" is the time required from the moment a conversion operation starts until it ends.
2. ${ }^{\mathrm{I}} \mathrm{ADC}$ is operating current during A / D conversion.
3. $\mathrm{f}_{\mathrm{OSC}}$ is the main oscillator clock.

Table 17-12. LVR (Low Voltage Reset) Circuit Characteristics
$\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
LVR voltage level	$\mathrm{V}_{\mathrm{LVR}}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.6	2.9	3.2	V

Figure 17-8. Operating Voltage Range

Figure 17-9. The Circuit Diagram to Improve EFT Characteristics

NOTE: To improve EFT characteristics, we recommend using power capacitor near S3C84E5/C84E9/P84E9 like Figure 17-9.

MECHANICAL DATA

OVERVIEW

The S3C84E5/C84E9/P84E9 microcontrollers are available in a 42-SDIP-600, 44-QFP-1010 package.

Figure 18-1. 42-SDIP-600 Package Dimensions

NOTE: Dimensions are in millimeters.

Figure 18-2. 44-QFP-1010 Package Dimensions

S3P84E9 OTP VERSION

OVERVIEW

The S3P84E9 single-chip CMOS microcontroller is the OTP (One Time Programmable) version of the S3C84E5/C84E9 microcontroller. It has an on-chip EPROM instead of a masked ROM. The EPROM is accessed by serial data format.

The S3P84E9 is fully compatible with the S3C84E5/C84E9, both in function in D.C. electrical characteristics and in pin configuration. Because of its simple programming requirements, the S3P84E9 is ideal as an evaluation chip for the S3C84E5/C84E9.

Figure 19-1. S3P84E9 Pin Assignments (42-SDIP Package)

Figure 19-2. S3P84E9 Pin Assignments (44-QFP Package)

Table 19-1. Descriptions of Pins Used to Read/Write the OTP

Main Chip Pin Name	During Programming			
	Pin Name	Pin No.	I/O	Function
P4.3	SDAT	$9(3)$	I/O	Serial data pin. Output port when reading and input port when writing. Can be assigned as a input or push-pull output port.
P4.2	SCLK	$10(4)$	I	Serial clock pin. Input only pin.
TEST	$V_{\text {PP }}$	$15(9)$	I	Power supply pin for EPROM cell writing (indicates that OTP enters into the writing mode). When 12.5 V is applied, OTP is in writing mode and when 5 V is applied, OTP is in reading mode. (Option)
$n R E S E T$	nRESET	$18(12)$	I	Chip Initialization
$\mathrm{V}_{\text {DD }} / \mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {DD }} / \mathrm{V}_{\text {SS }}$	$11(12) / 5(6)$	-	Logic power supply pin. V_{DD} should be tied to +5 V during programming.

NOTE: () means 44 QFP package.

Table 19-2. Comparison of S3P84E9 and S3C84E5/C84E9 Features

Characteristic	S3P84E9	S3C84E5/C84E9
Program memory	32 K -byte EPROM	$16 / 32 \mathrm{~K}$-byte mask ROM
Operating voltage $\left(\mathrm{V}_{\mathrm{DD}}\right)$	$\mathrm{V}_{\mathrm{LVR}}$ to 5.5 V	$\mathrm{~V}_{\mathrm{LVR}}$ to 5.5 V
OTP programming mode	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}(\mathrm{TEST})=12.5 \mathrm{~V}$	
Pin configuration	$42-\mathrm{SDIP/44-QFP}$	$42-$ SDIP/44-QFP
EPROM programmability	User Program 1 time by programmer	Programmed at the factory

OPERATING MODE CHARACTERISTICS

When 12.5 V is supplied to the V_{PP} (TEST) pin of the S3P84E9, the EPROM programming mode is entered. The operating mode (read, write, or read protection) is selected according to the input signals to the pins listed in Table 19-3 below.

Table 19-3. Operating Mode Selection Criteria

$\mathbf{V}_{\text {DD }}$	$\mathbf{V}_{\mathbf{P P}}$ (TEST)	REG/ MEM	Address (A14-A0)	R/W	Mode
5 V	5 V	0	$x x x x H$	1	EPROM read
	12.5 V	0	$x x x x H$	0	EPROM program
	12.5 V	0	$x x x x H$	1	EPROM verify
	12.5 V	1	$0 E 3 F H$	0	EPROM read protection

NOTE: "0" means Low level; "1" means High level.

NOTES

DEVELOPMENT TOOLS

OVERVIEW

Samsung provides a powerful and easy-to-use development support system on a turnkey basis. The development support system is composed of a host system, debugging tools, and supporting software. For a host system, any standard computer that employs Win95/98/2000 as its operating system can be used. A sophisticated debugging tool is provided both in hardware and software: the powerful in-circuit emulator, SMDS2+ or SK-1000, for the S3C7-, S3C9-, and S3C8- microcontroller families. SMDS2+ is a newly improved version of SMDS2, and SK-1000 is supported by a third party tool vendor. Samsung also offers supporting software that includes, debugger, an assembler, and a program for setting options.

SHINE

Samsung Host Interface for In-Circuit Emulator, SHINE, is a multi-window based debugger for SMDS2+. SHINE provides pull-down and pop-up menus, mouse support, function/hot keys, and context-sensitive hyper-linked help. It has an advanced, multiple-windowed user interface that emphasizes ease of use. Each window can be easily sized, moved, scrolled, highlighted, added, or removed.

SASM

The SASM is a re-locatable assembler for Samsung's S3C8-series microcontrollers. The SASM takes a source file containing assembly language statements and translates them into a corresponding source code, an object code and comments. The SASM supports macros and conditional assembly. It runs on the MS-DOS operating system. As it produces the re-locatable object codes only, the user should link object files. Object files can be linked with other object files and loaded into memory. SASM requires a source file and an auxiliary register file (device_name.reg) with device specific information.

SAMA ASSEMBLER

The Samsung Arrangeable Microcontroller (SAM) Assembler, SAMA, is a universal assembler, and generating an object code in the standard hexadecimal format. Assembled program codes include the object code used for ROM data and required In-circuit emulators program control data. To assemble programs, SAMA requires a source file and an auxiliary definition (device_name.def) file with device specific information.

HEX2ROM

HEX2ROM file generates a ROM code from a HEX file which is produced by the assembler. A ROM code is needed to fabricate a microcontroller which has a mask ROM. When generating a ROM code (.OBJ file) by HEX2ROM, the value "FF" is automatically filled into the unused ROM area, up to the maximum ROM size of the target device.

TARGET BOARDS

Target boards are available for all the S3C8-series microcontrollers. All the required target system cables and adapters are included on the device-specific target board. TB84E5/84E9 is a specific target board for the S3C84E5/C84E9 and S3P84E9 development.

OTP

One time programmable microcontrollers (OTP) for the S3C84E5/C84E9, and OTP programmers (SPW2plus: Single socket programmer, GW-PRO2: Gang programmer) are now available.

OTP PROGRAMMING SOCKET ADAPTER

When you program S3P84E9 OTPs by using ICE or SPW2plus programmers, you need OTP socket adapter to mount OTP devices on the programmers. In case of S3P84E9, there are SA-44QFP and SA-42SDIP socket adapters for it's 44QFP and 42SDIP packages respectively.

Figure 20-1. SMDS+ or SK-1000 Product Configuration

TB84E5/84E9 TARGET BOARD

The TB84E5/84E9 target board is used for the S3C84E5/C84E9 and the S3P84E9 microcontroller.
It is supported by the SMDS2+ or SK-1000 development system (In-Circuit Emulator). Figure 20-2. TB84E5/84E9 Target Board Configuration

Figure 20-2. S3C84E5/S3C84E9/S3P84E9 Target Board Configuration

Table 20-1. Power Selection Settings for TB84E5/84E9

Table 20-2. Using Single Header Pins as the Input Path for External Trigger Sources

Target Board Part	Comments
External Triggers	
Coxternal Trigger	
Sources of the	
Application System	

IDLE LED

This LED is ON when the evaluation chip (S3E84E0) is in idle mode.

STOP LED

This LED is ON when the evaluation chip (S3E84E0) is in stop mode.

PORT (P0.0, P0.1) SELECTION (SUB-OSC OR NORMAL INPUT)

In the debugging your program by using SMDS2+ or SK-1000, you can select the subsystem oscillator $32,768 \mathrm{~Hz}$ crystal or normal input port 0.0 and 0.1 .

Table 20-3. The Port 0.0 and Port 0.1 selection setting

"Sub-OSC" Setting	Description
$\begin{aligned} \text { XTin } \odot \bigcirc \bigcirc & \mathrm{P} 0.0 \\ \text { XTout } \propto \bigcirc \bigcirc & \mathrm{P} 0.1 \end{aligned}$	If you set the Sub-OSC to the XTin and XTout side, $32,768 \mathrm{~Hz}$-subsystem crystal will be connected to P0.0 and P0.1 pins, and these pins are isolated to the user system.
	If you set the Sub-OSC to the P0.0 and P0.1 side, $32,768 \mathrm{~Hz}$-subsystem crystal will be disconnected to P0.0 and P0.1 pins, and these pins are connected to the user system through J101.

Figure 20-3. 44-Pin Connector Pin Assignment for TB84E5/84E9

Figure 20-4. TB84E5/84E9 Adapter Cable for 44pin Connector Package

S3C8- SERIES MASK ROM ORDER FORM

Product description:

Device Number: S3C84E \qquad write down the ROM code number) Product Order Form: \square Package \square Pellet \square Wafer Package Type: \qquad

Package Marking (Check One):

Standard

Custom A
(Max 10 chars)

(Max 10 chars each line)

@ : Assembly site code, Y: Last number of assembly year, WW : Week of assembly

Delivery Dates and Quantities:

Deliverable	Required Delivery Date	Quantity	Comments
ROM code	-	Not applicable	See ROM Selection Form
Customer sample			
Risk order			See Risk Order Sheet

Please answer the following questions:
For what kind of product will you be using this order?New model
Replacement of an existing model
\square Upgrade of an existing model
\square Others

If you are replacing an existing model, please indicate the former product name
(

```
)
```

What are the main reasons you decided to use a Samsung microcontroller in your product?
Please check all that apply.

\square	Price	\square	
\square Product quality	\square	Features and functions	
\square		\square	Delivery on time
\square	Used same MCU before	\square	Quality of documentation

Mask Charge (US\$ / Won):

Customer Information:

Company Name:
Telephone number
Signatures:
(Person placing the order)
(Technical Manager)

S3C8- SERIES
 REQUEST FOR PRODUCTION AT CUSTOMER RISK

Customer Information:

Company Name:

Department:

Telephone Number: \qquad Fax: \qquad

Date:

Risk Order Information:

Device Number:
S3C84E \qquad - \qquad (write down the ROM code number)

Package:
Number of Pins: \qquad Package Type: \qquad

Intended Application: \qquad

Product Model Number: \qquad

Customer Risk Order Agreement:

We hereby request SEC to produce the above named product in the quantity stated below. We believe our risk order product to be in full compliance with all SEC production specifications and, to this extent, agree to assume responsibility for any and all production risks involved.

Order Quantity and Delivery Schedule:

Risk Order Quantity: \qquad PCS

Delivery Schedule:

Delivery Date (s)	Quantity	

Signatures:
(Person Placing the Risk Order)
(SEC Sales Representative)

S3C84E5/C84E9 MASK OPTION SELECTION FORM

Device Number:

S3C84E \qquad - \qquad (write down the ROM code number)

Attachment (Check one):

\square Diskette
$\square \mathrm{PROM}$

Customer Checksum:

Company Name:

\qquad

Signature (Engineer):

Please answer the following questions:

Application (Product Model ID: \qquad -)

Please describe in detail its application

